期刊文献+
共找到11,833篇文章
< 1 2 250 >
每页显示 20 50 100
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
1
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis electrocatalysts
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:2
2
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction:Recent developments and future outlook 被引量:1
3
作者 Abdul Hanan Hafiz Taimoor Ahmed Awan +5 位作者 Faiza Bibi Raja Rafidah Raja Sulaiman Wai Yin Wong Rashmi Walvekar Seema Singh Mohammad Khalid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期176-206,共31页
The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrid... The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrides.These materials exhibit intriguing chemical and physical properties,including excellent electrical conductivity and a large surface area,making them attractive candidates for the hydrogen evolution reaction(HER).This scientific review explores recent advancements in MXene-based electrocatalysts for HER kinetics.It discusses various compositions,functionalities,and explicit design principles while providing a comprehensive overview of synthesis methods,exceptional properties,and electro-catalytic approaches for H_(2) production via electrochemical reactions.Furthermore,challenges and future prospects in designing MXenes-based electrocatalysts with enhanced kinetics are highlighted,emphasizing the potential of incorporating different metals to expand the scope of electrochemical reactions.This review suggests possible efforts for developing advanced MXenes-based electrocatalysts,particularly for efficient H_(2) generation through electrochemical water-splitting reactions.. 展开更多
关键词 MXenes electrocatalyst Water Splitting Hydrogen Generation Clean Energy
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:2
4
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN electrocatalysts Ni_(3)S_(2)
下载PDF
Recent advances of carbon fiber-based self-supported electrocatalysts in oxygen electrocatalysis
5
作者 Jinyu Han Nanping Deng +7 位作者 Hao Chi Gang Wang Yilong Wang Qiang Zeng Zhaozhao Peng Bowen Cheng Baoming Zhou Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期334-363,共30页
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i... Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts. 展开更多
关键词 Carbon fiber Self-supported electrocatalysts ORR OER
下载PDF
Ribosome-inspired electrocatalysts inducing preferential nucleation and growth of three-dimensional lithium sulfide for high-performance lithium-sulfur batteries
6
作者 Zhen Wu Wenfeng He +7 位作者 Jiahui Yang Yunuo Gu Ruiqi Yang Yiran Sun Jiajia Yuan Xin Wang Junwu Zhu Yongsheng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期517-526,共10页
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol... Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design. 展开更多
关键词 Lithium-sulfur batteries electrocatalysts Nanocrystals Ribosome-inspired Nucleation and growth
下载PDF
Fullerenes and derivatives as electrocatalysts: Promises and challenges
7
作者 Kun Guo Ning Li +1 位作者 Lipiao Bao Xing Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期7-27,共21页
Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi... Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider. 展开更多
关键词 FULLERENE Fullerene derivative Metal-free catalyst Structural defect electrocatalyst
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
8
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 Metal oxide HER OER electrocatalyst Overall water spilling
下载PDF
Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density:A review
9
作者 Zhipeng Li Xiaobin Liu +5 位作者 Qingping Yu Xinyue Qu Jun Wan Zhenyu Xiao Jingqi Chi Lei Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期33-60,共28页
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past... The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER. 展开更多
关键词 electrocatalyst High current density Hydrogen evolution reaction Water electrolysis
下载PDF
Recent Advances on Ruthenium-based Electrocatalysts for Lithium-oxygen Batteries
10
作者 Yu-Zhe Wang Zhuo-Liang Jiang +2 位作者 Bo Wen Yao-Hui Huang Fu-Jun Li 《电化学(中英文)》 CAS 北大核心 2024年第8期1-16,共16页
Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru... Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction(OER).It facilitates decomposition of lithium peroxide(Li_(2)O_(2))by adjusting Li_(2)O_(2) morphologies,which is due to the strong interaction between Ru-based catalyst and superoxide anion(O_(2))intermediate.In this review,the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O_(2) batteries.Different configurations of Ru-based catalysts,including metal particles(Ru metal and alloys),single-atom catalysts,and Ru-loaded compounds with various substrates(carbon materials,metal oxides/sulfides),have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts.The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li_(2)O_(2) decomposition mechanism at the cathode interface.Finally,the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O_(2) batteries. 展开更多
关键词 Lithium-oxygen battery Ruthenium-based electrocatalyst Reaction mechanism Reaction kinetics OVERVOLTAGE
下载PDF
Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation
11
作者 Shuairu Zhu Xue Wang +4 位作者 Jiabo Le Na An Jianming Li Deyu Liu Yongbo Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期152-160,共9页
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h... Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts. 展开更多
关键词 dual-sites iron electrocatalyst stability neutral electrolyte oxygen evolution reaction spinel oxides
下载PDF
Trifunctional robust electrocatalysts based on 3D Fe/N-doped carbon nanocubes encapsulating Co4N nanoparticles for efficient battery-powered water electrolyzers
12
作者 Hyung Wook Choi Hongdae Lee +8 位作者 Jun Lu Seok Bin Kwon Dong In Jeong Beum Jin Park Jiwon Kim Bong Kyun Kang Gun Jang Dae Ho Yoon Ho Seok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期124-139,共16页
Herein,we have designed a highly active and robust trifunctional electrocatalyst derived from Prussian blue analogs,where Co_(4)N nanoparticles are encapsulated by Fe embedded in N-doped carbon nanocubes to synthesize... Herein,we have designed a highly active and robust trifunctional electrocatalyst derived from Prussian blue analogs,where Co_(4)N nanoparticles are encapsulated by Fe embedded in N-doped carbon nanocubes to synthesize hierarchically structured Co_(4)N@Fe/N-C for rechargeable zinc-air batteries and overall water-splitting electrolyzers.As confirmed by theoretical and experimental results,the high intrinsic oxygen reduction reaction,oxygen evolution reaction,and hydrogen evolution reaction activities of Co_(4)N@Fe/N-C were attributed to the formation of the heterointerface and the modulated local electronic structure.Moreover,Co_(4)N@Fe/N-C induced improvement in these trifunctional electrocatalytic activities owing to the hierarchical hollow nanocube structure,uniform distribution of Co_(4)N,and conductive encapsulation by Fe/N-C.Thus,the rechargeable zinc-air battery with Co_(4)N@Fe/N-C delivers a high specific capacity of 789.9 mAh g^(-1) and stable voltage profiles over 500 cycles.Furthermore,the overall water electrolyzer with Co_(4)N@Fe/N-C achieved better durability and rate performance than that with the Pt/C and IrO2 catalysts,delivering a high Faradaic efficiency of 96.4%.Along with the great potential of the integrated water electrolyzer powered by a zinc-air battery for practical applications,therefore,the mechanistic understanding and active site identification provide valuable insights into the rational design of advanced multifunctional electrocatalysts for energy storage and conversion. 展开更多
关键词 battery-powered electrolyzers hierarchical structure Prussian blue analog trifunctional electrocatalyst zinc-air battery
下载PDF
Nickel-Nitrogen-Carbon(Ni-N-C)Electrocatalysts Toward CO_(2)electroreduction to CO:Advances,Optimizations,Challenges,and Prosoects
13
作者 Qingqing Pang Xizheng Fan +7 位作者 Kaihang Sun Kun Xiang Baojun Li Shufang Zhao Young Dok Kim Qiaoyun Liu Zhongyi Liu Zhikun Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期160-180,共21页
Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Con... Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application. 展开更多
关键词 active sites CO_(2)reduction electrocatalysis Ni-N-C electrocatalysts optimization strategies
下载PDF
Electrocatalysts with atomic-level site for nitrate reduction to ammonia
14
作者 Shuai Yin Rong Cao +4 位作者 Yifan Han Jiachangli Shang Jing Zhang Wei Jiang Guigao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期642-668,共27页
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such... Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented. 展开更多
关键词 Ammonia synthesis Nitrate reduction electrocatalysts with atomic-level site Reaction mechanism In-situ characterization techniques
下载PDF
Data-Driven Design of Single-Atom Electrocatalysts with Intrinsic Descriptors for Carbon Dioxide Reduction Reaction
15
作者 Xiaoyun Lin Shiyu Zhen +4 位作者 Xiaohui Wang Lyudmila V.Moskaleva Peng Zhang Zhi-Jian Zhao Jinlong Gong 《Transactions of Tianjin University》 EI CAS 2024年第5期459-469,共11页
The strategic manipulation of the interaction between a central metal atom and its coordinating environment in single-atom catalysts(SACs)is crucial for catalyzing the CO_(2)reduction reaction(CO_(2)RR).However,it rem... The strategic manipulation of the interaction between a central metal atom and its coordinating environment in single-atom catalysts(SACs)is crucial for catalyzing the CO_(2)reduction reaction(CO_(2)RR).However,it remains a major challenge.While density-functional theory calculations serve as a powerful tool for catalyst screening,their time-consuming nature poses limitations.This paper presents a machine learning(ML)model based on easily accessible intrinsic descriptors to enable rapid,cost-effective,and high-throughput screening of efficient SACs in complex systems.Our ML model comprehensively captures the influences of interactions between 3 and 5d metal centers and 8 C,N-based coordination environments on CO_(2)RR activity and selectivity.We reveal the electronic origin of the different activity trends observed in early and late transition metals during coordination with N atoms.The extreme gradient boosting regression model shows optimal performance in predicting binding energy and limiting potential for both HCOOH and CO production.We confirm that the product of the electronegativity and the valence electron number of metals,the radius of metals,and the average electronegativity of neighboring coordination atoms are the critical intrinsic factors determining CO_(2)RR activity.Our developed ML models successfully predict several high-performance SACs beyond the existing database,demonstrating their potential applicability to other systems.This work provides insights into the low-cost and rational design of high-performance SACs. 展开更多
关键词 Density functional theory Machine learning CO_(2) reduction reaction electrocatalysts High-throughput screening
下载PDF
Durable hierarchical phosphorus‐doped biphase MoS_(2)electrocatalysts with enhanced H^(*)adsorption
16
作者 Yongteng Qian Jianmin Yu +4 位作者 Zhiyi Lyu Qianwen Zhang Tae Hyeong Lee Huan Pang Dae Joon Kang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期104-114,共11页
Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)na... Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides. 展开更多
关键词 1T/2H MoS_(2) density functional theory electrocatalysts phase engineering phosphorous doping
下载PDF
Effect of preparation routes on activity of Ag-MnO_x/C as electrocatalysts for oxygen reduction reaction in alkaline media 被引量:2
17
作者 伍秋美 阮建明 +1 位作者 周忠诚 桑商斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期510-519,共10页
The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray... The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2. 展开更多
关键词 SILVER manganese oxide oxygen reduction reaction zinc-air battery electrocatalyst full cell
下载PDF
Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction(HER) in alkaline medium to achieve efficient water splitting–A review 被引量:20
18
作者 Jamesh Mohammed-Ibrahim xiaoming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期111-160,共50页
Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production(a clean chemical fuel).This paper reviews the activi... Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production(a clean chemical fuel).This paper reviews the activity,stability and durability for hydrogen evolution reaction in alkaline medium of different types of recently reported potential electrocatalysts such as Ni,Co,NiCo,Fe,Cu,W,Mo,Se,Mn.Zn,V,and metal free based earth-abundant-electrocatalysts.Further,this paper reviews the strategies used to achieve the remarkably low overpotential(including r/i0:<35mV),high long term stability(including^:100 h)and high durability(including>5000 cycles)of potential earth-abundant-electrocatalysts for hydrogen evolution reaction in alkaline medium and those are better or well comparable with the state-of-the-art,noble,Pt/C electrocatalyst.Finally,this paper summarizes the efficient strategies such as preparing porous structured materials,preparing nanostructured materials with superaerophobic surface,preparing nanostructured materials,preparing carbon composites/integrating electrocatalysts with carbon,preparing amorphous materials,preparing materials w让h oxygen vacancies/defects,preparing metal chalcogenides,preparing bimetallic/multi-metallic materials,doping metals or heteroatoms,preparing electrocatalysts with core-shell structure,decorating electrocatalysts with amines,preparing homojunction/heterojunction structured materials,preparing hollow structured materials,and preparing boronrich surface to enhance the activity,stability,and durability for HER. 展开更多
关键词 HER electrocatalyst ELECTROCHEMICAL water SPLITTING EARTH abundant electrocatalyst Hydrogen energy
下载PDF
In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts 被引量:13
19
作者 Maoyu Wang Líneyárnadóttir +1 位作者 Zhichuan JXu Zhenxing Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期178-195,共18页
Nanoscale electrocatalysts have exhibited promising activity and stability,improving the kinetics of numerous electrochemical reactions in renewable energy systems such as electrolyzers,fuel cells,and metal-air batter... Nanoscale electrocatalysts have exhibited promising activity and stability,improving the kinetics of numerous electrochemical reactions in renewable energy systems such as electrolyzers,fuel cells,and metal-air batteries.Due to the size effect,nano particles with extreme small size have high surface areas,complicated morphology,and various surface terminations,which make them different from their bulk phases and often undergo restructuring during the reactions.These restructured materials are hard to probe by conventional ex-situ characterizations,thus leaving the true reaction centers and/or active sites difficult to determine.Nowadays,in situ techniques,particularly X-ray absorption spectroscopy(XAS),have become an important tool to obtain oxidation states,electronic structure,and local bonding environments,which are critical to investigate the electrocatalysts under real reaction conditions.In this review,we go over the basic principles of XAS and highlight recent applications of in situ XAS in studies of nanoscale electrocatalysts. 展开更多
关键词 X-ray ABSORPTION spectroscopy electrocatalyst NANOSCALE In SITU experiments
下载PDF
Modeling and Analysis of a Micromotor with an Electrostatically Levitated Rotor 被引量:5
20
作者 HAN Fengtian WU Qiuping ZHANG Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期1-8,共8页
The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor a... The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope. 展开更多
关键词 electrostatic levitation electrostatic micromotor variable-capacitance motor MICRO-GYROSCOPE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部