期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions
1
作者 Xinying Zhao Yuzhuo Jiang +5 位作者 Mengfan Wang Yunfei Huan Qiyang Cheng Yanzheng He Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期459-483,共25页
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the... Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future. 展开更多
关键词 electrocatalytic nitrate reduction electrocatalytic nitrite reduction Ammonia synthesis Pollutant removal ELECTROSYNTHESIS
下载PDF
Defect Engineering on Carbon‑Based Catalysts for Electrocatalytic CO2 Reduction 被引量:12
2
作者 Dongping Xue Huicong Xia +2 位作者 Wenfu Yan Jianan Zhang Shichun Mu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期56-78,共23页
Electrocatalytic carbon dioxide(CO2)reduction(ECR)has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy,but there are still some problems such as poor stability,low... Electrocatalytic carbon dioxide(CO2)reduction(ECR)has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy,but there are still some problems such as poor stability,low activity,and selectivity.While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost,high activity,and long-term stability.Recently,defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials.Here,the present review mainly summarizes the latest research progress of the construction of the diverse types of defects(intrinsic carbon defects,heteroatom doping defects,metal atomic sites,and edges detects)for carbon materials in ECR,and unveil the structure-activity relationship and its catalytic mechanism.The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed,as well as possible future solutions.It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts. 展开更多
关键词 electrocatalytic CO2 reduction Carbon-based nanomaterials Intrinsic defects Heteroatom doping defects Metal atomic sites
下载PDF
Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane 被引量:3
3
作者 Dunfeng Gao Fan Cai +3 位作者 Qinqin Xu Guoxiong Wang Xiulian Pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期694-700,共7页
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el... Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst. 展开更多
关键词 carbon dioxide gas-phase electrocatalytic reduction platinum-molybdenum catalyst Faradaic efficiency formation rate
下载PDF
Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia 被引量:4
4
作者 Xue‑Yang Ji Ke Sun +5 位作者 Zhi‑Kun Liu Xinghui Liu Weikang Dong Xintao Zuo Ruiwen Shao Jun Tao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期20-34,共15页
Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activi... Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia. 展开更多
关键词 Metal-organic frameworks Copper phthalocyanine electrocatalytic nitrate reduction reaction
下载PDF
Amorphous MoS_(3) enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction 被引量:2
5
作者 Ke Chu Haifeng Nan +3 位作者 Qingqing Li Yali Guo YeTian Wuming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期132-138,I0005,共8页
Developing low-priced,yet effective and robust catalysts for the nitrogen reduction reaction(NRR) is of vital importance for scalable and renewable electrochemical NH3 synthesis.Herein,we provide the first demonstrati... Developing low-priced,yet effective and robust catalysts for the nitrogen reduction reaction(NRR) is of vital importance for scalable and renewable electrochemical NH3 synthesis.Herein,we provide the first demonstration of MoS_3 as an efficient and durable NRR catalyst in neutral media.The prepared amorphous MoS_3 naturally possessed enriched S vacancies and delivered an NH3 yield of 51.7 μg h^(-1) mg^(-1)and a Faradaic efficiency of 12.8% at-0.3 V(RHE) in 0.5 M LiClO_4,considerably exceeding those of MoS_2 and most reported NRR catalysts.Density functional theory calculations unraveled that S vacancies involved in MoS_3 played a crucial role in activating the NRR via a consecutive mechanism with a low energetics barrier and simultaneously suppressing the hydrogen evolution reaction. 展开更多
关键词 electrocatalytic N_2 reduction Amorphous materials VACANCY N_(2)activation
下载PDF
Highly Selective Electrocatalytic CuEDTA Reduction by MoS_(2) Nanosheets for Efficient Pollutant Removal and Simultaneous Electric Power Output 被引量:1
6
作者 Hehe Qin Xinru Liu +2 位作者 Xiangyun Liu Hongying Zhao Shun Mao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期61-73,共13页
Electrocatalytic reduction of ethylenediamine tetraacetic acid copper(CuEDTA),a typical refractory heavy metal complexation pollutant,is an environmental benign method that operates at mild condition.Unfortunately,the... Electrocatalytic reduction of ethylenediamine tetraacetic acid copper(CuEDTA),a typical refractory heavy metal complexation pollutant,is an environmental benign method that operates at mild condition.Unfortunately,the selective reduction of CuEDTA is still a big challenge in cathodic process.In this work,we report a MoS_(2) nanosheet/graphite felt(GF)cathode,which achieves an average Faraday efficiency of 29.6%and specific removal rate(SRR)of 0.042 mol/cm^(2)/h for CuEDTA at−0.65 V vs SCE(saturated calomel electrode),both of which are much higher than those of the commonly reported electrooxidation technology-based removal systems.Moreover,a proofof-concept CuEDTA/Zn battery with Zn anode and MoS_(2)/GF cathode is demonstrated,which has bifunctions of simultaneous CuEDTA removal and energy output.This is one of the pioneer studies on the electrocatalytic reduction of heavy metal complex and CuEDTA/Zn battery,which brings new insights in developing efficient electrocatalytic reduction system for pollution control and energy output. 展开更多
关键词 electrocatalytic reduction CuEDTA removal MoS_(2)nanosheet CuEDTA/Zn battery Faraday efficiency
下载PDF
Microperoxidase-11 Modified Electrode and Its Electrocatalytic Activity on the Reduction of O_2 and H_2O_2
7
作者 JIANG Hui-jun +2 位作者 GAO Ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第1期54-58,共5页
Microperoxidase 11(MP 11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal r... Microperoxidase 11(MP 11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP 11 was -170 mV, which is significantly more positive than that of MP 11 in a solution or immobilized on the surface of electrodes prepared with other methods. This MP 11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide. 展开更多
关键词 Microperoxidase 11 Modified electrode electrocatalytic reduction OXYGEN Hydrogen peroxide
下载PDF
Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia
8
作者 Yangshuo Li Huiyong Wang +5 位作者 Bing Chang Yingying Guo Zhiyong Li Shamraiz Hussain Talib Zhansheng Lu Jianji Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1174-1184,共11页
Disulfide zirconium(ZrS_(2)) is a two-dimensional(2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties.However,mass production of high... Disulfide zirconium(ZrS_(2)) is a two-dimensional(2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties.However,mass production of high quality of ZrS_(2)nanosheets to realize their practical application remains a challenge.Here,we have successfully exfoliated the bulk ZrS_(2)powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone(NMP) assisted via aliphatic amines as intercalators.It is found that the exfoliation yield is as high as 27.3%,which is the record value for the exfoliation of ZrS_(2)nanosheets from bulk ZrS_(2)powder,and 77.1% of ZrS_(2)nanosheets are 2-3 layers.The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation.Furthermore,the ZrS_(2)nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH3yield of 57.75 μg h^(-1)mg_(cat.)^(-1),which is twice that by ZrS_(2)nanofibers reported in literature and three times that by the bulk ZrS_(2)powder.Therefore,the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS_(2)nanosheets for high activity electrocatalysis. 展开更多
关键词 Disulfide zirconium Liquid-phase exfoliation Aliphatic amines electrocatalytic dinitrogen reduction AMMONIA
下载PDF
The pitfalls in electrocatalytic nitrogen reduction for ammonia synthesis
9
作者 Huimin Liu Néstor Guijarro Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期149-154,I0005,共7页
Ammonia synthesis by electrocatalytic nitrogen reduction reaction(EC-NRR)has gained momentum in recent years fueled by its potential to operate at ambient conditions,unlike the highly energyintensive yet long-standing... Ammonia synthesis by electrocatalytic nitrogen reduction reaction(EC-NRR)has gained momentum in recent years fueled by its potential to operate at ambient conditions,unlike the highly energyintensive yet long-standing Haber-Bosch process.However,the large disparity of the yields and Faradic efficiencies reported for EC-NRR raises serious concerns about the reliability of the experimental results.In this perspective,we elaborate on the potential sources of error when assessing EC-NRR and update the testing protocols to circumvent them,and more importantly,we pose a general call for consensus on ammonia production analysis and reporting to lay the solid foundations that this burgeoning field requires to thrive. 展开更多
关键词 electrocatalytic nitrogen reduction Ammonia synthesis PITFALLS Standard protocols
下载PDF
Electrocatalysis of Metalloporphyrins(Ⅷ)——Electrocatalytic Reduction of Molecular Oxygen with Water-Soluble Cobalt (Ⅱ) Tetrakis(4-Trimethyl Ammonium Phenyl) Porphyrin Catalyst
10
作者 Wang Zongli, Zhang Hui and Pang Daiwen (Department of Chemistry, Wuhan University , Wuhan) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1990年第2期102-109,共8页
Reported here is the electrocatalytic reduction of molecular oxygen in the presence of water-soluble cobalt(Ⅱ) tetrakis(4-trimethyl ammonium phenyl) porphyrin (Co(Ⅱ)TTAPP) as catalyst in solutions of various pH valu... Reported here is the electrocatalytic reduction of molecular oxygen in the presence of water-soluble cobalt(Ⅱ) tetrakis(4-trimethyl ammonium phenyl) porphyrin (Co(Ⅱ)TTAPP) as catalyst in solutions of various pH values. The overpotential of molecular oxygen reduction is reduced by ca. 200-400 mV in acidic and neutral solutions compared with several decades of millivolts in alkaline solutions, indicating that Co(Ⅱ)TTAPP possesses much higher catalytic activity in acidic and neutral solutions than in alkaline. H2TTAPP in solutions of various pH exhibits no significant catalytic activity for oxygen reduction. The significant difference in the electrocatalytic activity of Co(Ⅱ)TTAPP from that of H2TTAPP for oxygen reduction indicates that the electrocatalytic activity of Co(Ⅱ)TTAPP should be attributed to the central cobalt atom (Co(Ⅱ)) coordinated by N4 internal ring in Co(Ⅱ)TTAPP. The total number of electrons involved in oxygen reduction electrocatalyzed by Co (Ⅱ)TTAPP is 2, and the product of such reaction is H2O2 or HO2-in solutions of various pH. The reaction mechanism of oxygen reduction in acidic and alkaline solutions is also discussed. 展开更多
关键词 ELECTROCATALYSIS METALLOPORPHYRINS electrocatalytic reduction
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
11
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Two-Dimensional Organometallic TM3–C12S12 Monolayers for Electrocatalytic Reduction of CO2
12
作者 Jin-Hang Liu Li-Ming Yang Eric Ganz 《Energy & Environmental Materials》 2019年第3期193-200,共8页
Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investig... Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investigate the electrocatalytic performance of the first transition metal series TM3–C12S12 monolayers on CO2 using spin-polarized density functional theory.The calculations show that M3–C12S12 exhibits excellent catalytic activity and selectivity in the catalytic reduction in CO2.The main reduction products of Sc,Ti,and Cr are CH4.V,Mn,Fe and Zn mainly produce HCOOH,and Co produces HCHO,while CO is the main product for Ni and Cu.For Sc,Ti,and Cr,the overpotentials are>0.7 V,while for V,Mn,Fe,Co,Ni,Cu,Zn,the overpotentials are very low and range from 0.27 to 0.47 V.Therefore,our results indicate that many of the M3–C12S12 monolayers are expected to be excellent and efficient CO2 reduction catalysts. 展开更多
关键词 density functional theory electrocatalytic reduction of CO2 organometallic TM3-C12S12 Monolayers single atom catalyst two-dimensional materials
下载PDF
Cu-Based Materials for Enhanced C_(2+) Product Selectivity in Photo-/Electro-Catalytic CO_(2) Reduction: Challenges and Prospects 被引量:1
13
作者 Baker Rhimi Min Zhou +2 位作者 Zaoxue Yan Xiaoyan Cai Zhifeng Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期25-66,共42页
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca... Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future. 展开更多
关键词 Photocatalytic CO_(2)reduction Cu-based materials electrocatalytic CO_(2)reduction
下载PDF
Nitrogen-doping boosts ^(*)CO utilization and H_(2)O activation on copper for improving CO_(2) reduction to C_(2+) products
14
作者 Yisen Yang Zhonghao Tan +5 位作者 Jianling Zhang Jie Yang Renjie Zhang Sha Wang Yi Song Zhuizhui Su 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1459-1465,共7页
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef... To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved. 展开更多
关键词 electrocatalytic CO_(2)reduction reaction Copper catalyst DOPING Multi-carbon products In situ Raman measurement
下载PDF
Promoting electrocatalytic nitrogen reduction to ammonia via dopant boron on two-dimensional materials
15
作者 Ya-Hui Cui Wen-Cheng Ouyang +2 位作者 Ai-Jun Gao Chang-Yuan Yu Li-Peng Zhang 《Rare Metals》 SCIE EI CAS 2024年第10期5117-5125,共9页
Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the... Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the interaction between doped boron and matrix materials on NRR catalytic performance is still unclear,which is limiting the development of catalysts containing boron for NRR.Here,NRR on different boron-doped twodimensional(2D)materials was explored by first principle theory.It is found that adsorption energy of intermediate*NNH(E*NNH)can be used as a descriptor to characterize the catalytic activity for NRR.Boron-adsorbed black phosphorus(B-BP)is demonstrated showing excellent NRR catalytic activity and suppressing hydrogen evolution reaction.It is disclosed that the excellent catalytic performance of boron-doped structures comes from a proper quantitatively electron transfer(0.8e)between nitrogen in*NNH and the active site boron atom.This work not only established a descriptor for NRR catalytic activity on B-doped 2D materials,but also screened out a potential NRR catalyst.More importantly,the intrinsic reason and mechanism of high catalytic activity of boron-doped structures were proposed.This work provides a design principle for exploring high-performance NRR electrocatalysts containing boron. 展开更多
关键词 electrocatalytic nitrogen reduction reaction Boron-doped two-dimensional materials Descriptor Density functional theory
原文传递
The Electrocatalytic Performance of Rare Earth Ion Doped Co_(0.2)Ni_(0.8)-MOF-74 Catalyst for Nitrogen Reduction
16
作者 YUE Song GONG Lunjun +4 位作者 YANG Tonghui HU Weida LIU Xiaopan GAO Pengzhao XIAO Hanning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2024年第6期1337-1347,共11页
We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of ... We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance. 展开更多
关键词 electrocatalytic nitrogen reduction metal organic framework rare earth ions doping
下载PDF
Accelerating Electrocatalytic Nitrate Reduction to Ammonia via Weakening of Intermediate Adsorption on Cu-Based
17
作者 Yizhu Chen Ang Ma +8 位作者 Lei Chen Yan Li Yan Hong Yushuo Zhang Yunyi Liu Lixin Wei Yudong Li Siqi Li Song Liu 《Transactions of Tianjin University》 EI CAS 2024年第6期488-497,共10页
Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions(NO 3 RR).NO 3 RR is a“two birds,one stone”approach,simultaneously removing NO 3−pollutants and producing valuable ammonia(NH 3).Ho... Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions(NO 3 RR).NO 3 RR is a“two birds,one stone”approach,simultaneously removing NO 3−pollutants and producing valuable ammonia(NH 3).However,the strong coordination between the NO 3−intermediate and the catalytic active sites seriously hinders the conversion effi ciency.Here,we determined that,through encapsulation strategies,the carbon layer could weaken the NO 3−intermediate binding to active sites,resulting in higher NH 3 yields.We experimentally fabricated electrocatalysts,i.e.,Cu nanoparticles encapsulating(or loaded on)N-doped carbon nanofi bers(NCNFs)called Cu@NCNFs(Cu-NCNFs),using electrostatic spinning.As a result,Cu@NCNFs can achieve NH 3 yields of 17.08 mg/(h·mg cat)at a voltage of−0.84 V and a Faraday effi ciency of 98.15%.Meanwhile,the electrochemical properties of the Cu nanoparticles on the surface of carbon fi bers(Cu-NCNFs)are lower than those of the Cu@NCNFs.The in situ Raman spectra of Cu@NCNFs and Cu-NCNFs under various reduction potentials during the NO 3 RR process show that catalyst encapsulation within carbon layers can eff ectively reduce the adsorption of N species by the catalyst,thus improving the catalytic performance in the nitrate-to-ammonia catalytic conversion process. 展开更多
关键词 electrocatalytic nitrate reduction reactions Ammonia synthesis Copper-based electrocatalysts·Electrostatically spun carbon fi ber Regulated adsorption
下载PDF
Insights into electrochemical nitrogen reduction reaction mechanisms:Combined effect of single transition-metal and boron atom 被引量:5
18
作者 Xingzhu Chen Wee-Jun Ong +2 位作者 Xiujian Zhao Peng Zhang Neng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期577-585,共9页
Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focus... Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research. 展开更多
关键词 Boron-carbon–nitrogen(BCN) Single-atom catalysts electrocatalytic nitrogen reduction reaction Density functional theory Combined effect
下载PDF
La-doped TiO_(2) nanorods toward boosted electrocatalytic N_(2)-to-NH_(3)conversion at ambient conditions 被引量:3
19
作者 Li Li Haijun Chen +12 位作者 Lei Li Baihai Li Qianbao Wu Chunhua Cui Biao Deng Yonglan Luo Qian Liu Tingshuai Li Fang Zhang Abdullah M.Asiri Zhe-Sheng Feng Yan Wang Xuping Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1755-1762,共8页
Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires... Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires the development of an active electrocatalyst to drive the N_(2) reduction reaction(NRR)for NH_(3) production at ambient conditions.Herein,we demonstrate the development of La-doped TiO_(2) nanorods as an efficient NRR electrocatalyst for ambient NH3 synthesis.The optimized La-TiO_(2) catalyst offers a large NH_(3) yield of 23.06 pg h1 mgcat 1 and a high Faradaic efficiency of 14.54%at-0.70 V versus reversible hydrogen electrode in 0.1 M L1CIO_(4),outperforming most La-and Ti-based catalysts reported before.Significantly,it also demonstrates high electrochemical stability and its activity decay is negligible after 48 h test.The mechanism is further revealed by density functional theory calculations. 展开更多
关键词 La doping electrocatalytic N2 reduction Oxygen vacancy TiO_(2) Density functional theory
下载PDF
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
20
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部