Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t...Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.展开更多
A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surf...A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.展开更多
Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs...Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.展开更多
Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol...Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H_(2)SO_(4)at 60℃.The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m^(2)/g due to the ultrafine nanostructure.The active surface area remains almost invariable even after 15%macroscopic compressive strain.Furthermore,np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt.Np-Pt is a promising surface-or interface-controlled functional material,particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness.This work demonstrated the potential application of np-Pt as an electrochemical actuation material.In-situ dilatometry experiments revealed that the surface adsorp-tion-desorption of OH species on np-Pt causes significant strain variations.The proposed np-Pt electrochem-ical actuator shows an operating voltage down to 1.0 V,a large reversible strain amplitude of 0.37%,and a strain energy density of 1.64 MJ/m^(3).展开更多
Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspec...Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspective,we highlight some common pitfalls when measuring and reporting electrocatalytic data,which should be avoided to ensure the accuracy and reproducibility and to advance the water splitting field.We advocate to prevent the introduction of artefacts from the counter and reference electrodes,as well as the impurities in the electrolyte when conducting electrocatalyst activity measurements.In addition,we encourage the use of the electrochemically active surface area(ECSA)-normalized current densities to represent the intrinsic activity of the reported catalysts for a better comparison with previously known materials.Suitable ECSA measurement methods should be employed based on the nature of catalysts.Recommendations made in this perspective will hopefully assist in identifying advanced catalysts for water splitting research.展开更多
基金the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124)the National Natural Science Foundation of China(21975292,21978331,22068008,and 52101186)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010167 and 2022A1515011196)the Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)the Guangzhou Basic and Applied Basic Research Project(202201011449)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220 and FC202216)。
文摘Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.
基金the financial support provided by the National Natural Science Foundation of China (No.21573093)the National Key Research and Development Program (No.2017YFB0307501)Guangdong Innovative and Entrepreneurial Research Team Program (No.2013C092)
文摘A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.
基金supported by the National Natural Science Foundation of China(Nos.51872157,52072208)Shenzhen Technical Plan Project(JCYJ20170817161753629)+1 种基金Fundamental Research Project of Shenzhen(No.JCYJ20190808153609561)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111).
文摘Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.
文摘Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H_(2)SO_(4)at 60℃.The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m^(2)/g due to the ultrafine nanostructure.The active surface area remains almost invariable even after 15%macroscopic compressive strain.Furthermore,np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt.Np-Pt is a promising surface-or interface-controlled functional material,particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness.This work demonstrated the potential application of np-Pt as an electrochemical actuation material.In-situ dilatometry experiments revealed that the surface adsorp-tion-desorption of OH species on np-Pt causes significant strain variations.The proposed np-Pt electrochem-ical actuator shows an operating voltage down to 1.0 V,a large reversible strain amplitude of 0.37%,and a strain energy density of 1.64 MJ/m^(3).
基金the Fund of the Australian Renewable Energy Agency(ARENA)and the Fund of the Australian Research Council(No.FT170100224)。
文摘Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspective,we highlight some common pitfalls when measuring and reporting electrocatalytic data,which should be avoided to ensure the accuracy and reproducibility and to advance the water splitting field.We advocate to prevent the introduction of artefacts from the counter and reference electrodes,as well as the impurities in the electrolyte when conducting electrocatalyst activity measurements.In addition,we encourage the use of the electrochemically active surface area(ECSA)-normalized current densities to represent the intrinsic activity of the reported catalysts for a better comparison with previously known materials.Suitable ECSA measurement methods should be employed based on the nature of catalysts.Recommendations made in this perspective will hopefully assist in identifying advanced catalysts for water splitting research.