The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a...Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.展开更多
Delafossite AgFeO_(2)nanoparticles with a mixture of 2H and 3R phases were successfully fabricated by using a simple co-precipitation method.The resulting precursor was calcined at temperatures of 100,200,300,400,and ...Delafossite AgFeO_(2)nanoparticles with a mixture of 2H and 3R phases were successfully fabricated by using a simple co-precipitation method.The resulting precursor was calcined at temperatures of 100,200,300,400,and 500℃to obtain the delafossite AgFe0_(2)phase.The morphology and microstructure of the prepared AgFeO_(2)samples were characterized by using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),N_(2) adsorption/desorption,X-ray absorption spectroscopy(XAS),and Xray photoelectron spectroscopy(XPS)techniques.A three-electrode system was employed to investigate the electrochemical properties of the delafossite AgFeO_(2)nanoparticles in a 3 M KOH electrolyte.The delafossite AgFeO_(2)nanoparticles calcined at 100℃(AFO100)exhibited the highest surface area of 28.02 m^(2)·g^(-1)and outstanding electrochemical performance with specific capacitances of 229.71 F·g^(-1)at a current density of 1 A·g^(-1)and 358.32 F·g^(-1)at a scan rate of 2 mV·s^(-1).This sample also demonstrated the capacitance retention of 82.99% after 1000 charge/discharge cycles,along with superior specific power and specific energy values of 797.46 W·kg^(-1)and 72.74Wh·kg^(-1),respectively.These findings indicate that delafossite AgFeO_(2)has great potential as an electrode material for supercapacitor applications.展开更多
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu...Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were i...In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.展开更多
Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization...Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization, corrosion potential (φcor ) and electrochemical impedance spectroscopy techniques (EIS). The impedance data were fitted to appropriate equivalent circuits to explain the different electrochemical processes occurring at the electrode-electrolyte interface. The results indicate that Al-Zn-Si-RE coating reveals the similar polarization behavior as Zn-15Al coating. The coating has no passive region in the anodic polarization, but far lower corrosion current and much higher corrosion potential. Al-Zn-Si-RE coating provides effective sacrificial protection for steel substrate and the sacrificial anodic protection plays dominant role during the immersion process. In addition, theφcor evolution and EIS plots indicate that the corrosion process can be divided into five stages: pitting-dissolution-redeposition, activation corrosion, cathodic protection, physical barriers and the coating failure.展开更多
In order to evaluate the electrochemical properties of aluminum alloy anode under high current densities in alkaline electrolyte, the galvanostatic discharge, potentiodynamic polarization and hydrogen evolution tests ...In order to evaluate the electrochemical properties of aluminum alloy anode under high current densities in alkaline electrolyte, the galvanostatic discharge, potentiodynamic polarization and hydrogen evolution tests of three experimental Al?Mg?Sn?In?(Ga) alloys were performed. The results show that the alloying element gallium improves the working potentials of experimental Al?Mg?Sn?In alloys under different discharge current densities. The average working potentials of the alloys containing gallium can reach?1.3 V under current density ranging from 650 to 900 mA/cm2, while those of alloy without Ga are only?1.0 V. Such phenomenon is attributed to the solid solution which can form amalgam with aluminum matrix. Such an amalgam can form the hydrolyzed species during the discharge process and lead to the corrosion infiltrating into aluminum matrix.展开更多
The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conv...The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.展开更多
The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedan...The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Cathodic polarization result indicates that the cathodic limiting current density increases with decreasing the TEL thickness. EIS result shows that the corrosion rate increases with decreasing the TEL thickness at the initial stage because the corrosion is dominated by the cathodic process, whereas after long immersion time, the corrosion degree with the TEL thickness is in the sequence of 150 μm 〉 310 μm〉 10μm ≈ bulk solution 〉 57 μm. The measurements of OCP and EIS present in-situ electrochemical corrosion information and their results are in good agreement with that of physical characterizations.展开更多
The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 el...The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 electrolyte at 80 ℃. The pitting potential and self corrosion potential of A1 foil were measured with polarization curves (PC). The potentiostatic current--time curve was recorded and the surface and cross section images of etched A1 foil were observed with SEM. The electrochemical impedance spectroscopy (EIS) of etched A1 foil and potential transient curves (PTC) during initial etching stage were measured. The results show the chemical pretreatments can activate A1 foil surface, facilitate the absorption, diffusion and migration of C1- onto the A1 foil during etching, and improve the initiation rate of meta-stable pits and density of stable pits and tunnels, leading to much increase in the real surface area and special capacitance of etched A1 foil.展开更多
The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear ...The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.展开更多
The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impeda...The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.展开更多
The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallogr...The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallographic microscopy and electrochemical measurements. The results show that both pitting corrosion from or around the intermetallic particles and intergranular corrosion are observed after the immersion test due to the inhomogeneous nature of the microstructure of the 7A09 alloy. The preferential dissolution of the anodic Cu-depleted zone along grain boundaries is believed to be the possible cause of intergranular corrosion. The passivation and depassivation of this alloy show significant dependence of immersion time, owing to the formation and dissolution of various passive films on the sample surfaces. Furthermore, the corrosion process and corrosion mechanism were also analyzed.展开更多
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea...The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.展开更多
The anodic layer and oxygen evolution behavior of Pb-Ag-Nd alloy during pulse current polarization and constant current polarization in 160 g/L H2SO4 solution was comparatively investigated by chronopotentiometry, SEM...The anodic layer and oxygen evolution behavior of Pb-Ag-Nd alloy during pulse current polarization and constant current polarization in 160 g/L H2SO4 solution was comparatively investigated by chronopotentiometry, SEM, XRD, EIS and Tafel techniques. The results show that the anodic layer on Pb-Ag-Nd alloy formed through pulse current polarization is more intact and presents fewer micro-holes than that formed through constant current polarization. This could be attributed to the low current density period, which works as a ‘recovery period'. During this period, the oxygen evolution reaction is less intense, which benefits the recovery of porous anodic layer. Pb-Ag-Nd anode also shows a lower anodic potential during pulse current polarization, which is in accordance with its smaller charge transfer resistance and smaller Tafel slope coefficient at high over-potential region. The lower anodic potential could be ascribed to the higher concentration of Pb O2 in the anodic layer, which promotes the formation of more reactive sites for the oxygen evolution reaction.展开更多
The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time...The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time was studied.The corrosion process and EIS evolution are divided into three stages.In the initial stage,EIS is composed of two overlapped capacitive arcs,the polarization resistance and charge transfer resistance increase rapidly with immersion time,and the corrosion rate decreases.Then,two well-defined capacitive arcs appear,and the charge transfer resistance and corrosion rate remain stable.After a long immersion time,inductive component appears in a low frequency range,the charge transfer resistance decreases and the corrosion rate increases with the immersion time.The fractal dimension obtained from the time records of EIS seems to be a promising tool for the analysis of corrosion morphology because of its direct relationship with the metal surface.展开更多
A novel method for controlled synthesis of crystalline molybdenum dioxides nanowhiskers (whisker-MoO2) by using moderate reductive and precursor ion under hydrothermal conditions is reported. The result shows that t...A novel method for controlled synthesis of crystalline molybdenum dioxides nanowhiskers (whisker-MoO2) by using moderate reductive and precursor ion under hydrothermal conditions is reported. The result shows that the as-obtained samples have a monoclinic structure, and the whisker-MoO2 is composed of nanowires with diameters of ca. 20 nm. Formation of whisker-MoO2 was through a typical precursor-reduction process, in which cetyltrimethylammonium bromide (CTAB) served as a cationic surfactant and acetone as a reductant. The electrochemical behavior of whisker-MoO2 was studied.展开更多
In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCN...In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.展开更多
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金supported by ANID Fondecyt Iniciacion 11180540(to FJB)ANID PAI 77180077(to FJB)+2 种基金UNAB DI-02-22/REG(to FJB)Exploración-ANID 13220203(to FJB)ANID-MILENIO(NCN2023_23,to FJB)。
文摘Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.
基金Suranaree University of Technology(SUT)Thailand Science,Research and Innovation(TSRI)National Science,Research and Innovation Fund(NSRF)(project cord.179314)。
文摘Delafossite AgFeO_(2)nanoparticles with a mixture of 2H and 3R phases were successfully fabricated by using a simple co-precipitation method.The resulting precursor was calcined at temperatures of 100,200,300,400,and 500℃to obtain the delafossite AgFe0_(2)phase.The morphology and microstructure of the prepared AgFeO_(2)samples were characterized by using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),N_(2) adsorption/desorption,X-ray absorption spectroscopy(XAS),and Xray photoelectron spectroscopy(XPS)techniques.A three-electrode system was employed to investigate the electrochemical properties of the delafossite AgFeO_(2)nanoparticles in a 3 M KOH electrolyte.The delafossite AgFeO_(2)nanoparticles calcined at 100℃(AFO100)exhibited the highest surface area of 28.02 m^(2)·g^(-1)and outstanding electrochemical performance with specific capacitances of 229.71 F·g^(-1)at a current density of 1 A·g^(-1)and 358.32 F·g^(-1)at a scan rate of 2 mV·s^(-1).This sample also demonstrated the capacitance retention of 82.99% after 1000 charge/discharge cycles,along with superior specific power and specific energy values of 797.46 W·kg^(-1)and 72.74Wh·kg^(-1),respectively.These findings indicate that delafossite AgFeO_(2)has great potential as an electrode material for supercapacitor applications.
基金Natural Science Foundation of Hebei Province,Grant/Award Number:F2021203097China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702756,2023T160551National Natural Science Foundation of China,Grant/Award Numbers:51971245,52022088。
文摘Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金Projects(5110417951374247)supported by the National Natural Science Foundation of China
文摘In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.
基金Project(CXLX12_0149)supported by Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(BA2011029)supported by Special Fund of Transformation of Sci-tech Achievements of Jiangsu Province,China+1 种基金Project(BY2011101)supported by the Creative Fund of Combination of Industry,Academia and Research of Jiangsu Province,China-Prospective Joint Research ProjectProject(kfjj120217)supported by Open Funds of NUAA Innovation Base(Laboratory)for Graduate Students
文摘Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization, corrosion potential (φcor ) and electrochemical impedance spectroscopy techniques (EIS). The impedance data were fitted to appropriate equivalent circuits to explain the different electrochemical processes occurring at the electrode-electrolyte interface. The results indicate that Al-Zn-Si-RE coating reveals the similar polarization behavior as Zn-15Al coating. The coating has no passive region in the anodic polarization, but far lower corrosion current and much higher corrosion potential. Al-Zn-Si-RE coating provides effective sacrificial protection for steel substrate and the sacrificial anodic protection plays dominant role during the immersion process. In addition, theφcor evolution and EIS plots indicate that the corrosion process can be divided into five stages: pitting-dissolution-redeposition, activation corrosion, cathodic protection, physical barriers and the coating failure.
基金Project supported by the Open Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to evaluate the electrochemical properties of aluminum alloy anode under high current densities in alkaline electrolyte, the galvanostatic discharge, potentiodynamic polarization and hydrogen evolution tests of three experimental Al?Mg?Sn?In?(Ga) alloys were performed. The results show that the alloying element gallium improves the working potentials of experimental Al?Mg?Sn?In alloys under different discharge current densities. The average working potentials of the alloys containing gallium can reach?1.3 V under current density ranging from 650 to 900 mA/cm2, while those of alloy without Ga are only?1.0 V. Such phenomenon is attributed to the solid solution which can form amalgam with aluminum matrix. Such an amalgam can form the hydrolyzed species during the discharge process and lead to the corrosion infiltrating into aluminum matrix.
基金Project(RDCPJ 428402)supported by the Natural Sciences and Engineering Research Council of Canada
文摘The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.
基金Projects (51131005, 51171172, 50801056) supported by the National Natural Science Foundation of ChinaProject (Y4110074) supported by Natural Science Foundation of Zhejiang Province, China
文摘The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Cathodic polarization result indicates that the cathodic limiting current density increases with decreasing the TEL thickness. EIS result shows that the corrosion rate increases with decreasing the TEL thickness at the initial stage because the corrosion is dominated by the cathodic process, whereas after long immersion time, the corrosion degree with the TEL thickness is in the sequence of 150 μm 〉 310 μm〉 10μm ≈ bulk solution 〉 57 μm. The measurements of OCP and EIS present in-situ electrochemical corrosion information and their results are in good agreement with that of physical characterizations.
基金Project supported by University New Materials Disciplines Constructions Program of Beijing Region,ChinaProject(51172102/E020801) supported by the National Natural Science Foundation of China
文摘The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 electrolyte at 80 ℃. The pitting potential and self corrosion potential of A1 foil were measured with polarization curves (PC). The potentiostatic current--time curve was recorded and the surface and cross section images of etched A1 foil were observed with SEM. The electrochemical impedance spectroscopy (EIS) of etched A1 foil and potential transient curves (PTC) during initial etching stage were measured. The results show the chemical pretreatments can activate A1 foil surface, facilitate the absorption, diffusion and migration of C1- onto the A1 foil during etching, and improve the initiation rate of meta-stable pits and density of stable pits and tunnels, leading to much increase in the real surface area and special capacitance of etched A1 foil.
基金Project(LSL-1310)supported by the Open Project of State Key Laboratory of Solid Lubrication,ChinaProjects(2014QN013,2015GJB004)supported by the Research Foundation of Henan University of Science and Technology,China
文摘The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.
基金Project(2007AA03Z425)supported by the Hi-tech Research and Development Program of ChinaProject(50404011)supported by the National Natural Science Foundation of China
文摘The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.
基金Project(JSJC2013209B057)supported by the National Defense Technology Foundation of China
文摘The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallographic microscopy and electrochemical measurements. The results show that both pitting corrosion from or around the intermetallic particles and intergranular corrosion are observed after the immersion test due to the inhomogeneous nature of the microstructure of the 7A09 alloy. The preferential dissolution of the anodic Cu-depleted zone along grain boundaries is believed to be the possible cause of intergranular corrosion. The passivation and depassivation of this alloy show significant dependence of immersion time, owing to the formation and dissolution of various passive films on the sample surfaces. Furthermore, the corrosion process and corrosion mechanism were also analyzed.
基金Project (MKPT-02-18) supported by the National Defense Science and Technology Industry Committee of ChinaProject (51101171)supported by the National Natural Science Foundation of China
文摘The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.
基金Projects(51204208,51374240)supported by the National Natural Science Foundation of ChinaProject(2012BAA03B04)supported by the National Science and Technology Pillar Program of ChinaProject(2014zzts028)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘The anodic layer and oxygen evolution behavior of Pb-Ag-Nd alloy during pulse current polarization and constant current polarization in 160 g/L H2SO4 solution was comparatively investigated by chronopotentiometry, SEM, XRD, EIS and Tafel techniques. The results show that the anodic layer on Pb-Ag-Nd alloy formed through pulse current polarization is more intact and presents fewer micro-holes than that formed through constant current polarization. This could be attributed to the low current density period, which works as a ‘recovery period'. During this period, the oxygen evolution reaction is less intense, which benefits the recovery of porous anodic layer. Pb-Ag-Nd anode also shows a lower anodic potential during pulse current polarization, which is in accordance with its smaller charge transfer resistance and smaller Tafel slope coefficient at high over-potential region. The lower anodic potential could be ascribed to the higher concentration of Pb O2 in the anodic layer, which promotes the formation of more reactive sites for the oxygen evolution reaction.
基金Foundation item: Projects (50771092, 21073162) supported by the National Natural Science Foundation of ChinaProject (2008) supported by the Scientific and Technological projects of Ningxia Province, China+1 种基金Project (08JC1421600) supported by the Science and Technology Commission of Shanghai,ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing,China
文摘The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time was studied.The corrosion process and EIS evolution are divided into three stages.In the initial stage,EIS is composed of two overlapped capacitive arcs,the polarization resistance and charge transfer resistance increase rapidly with immersion time,and the corrosion rate decreases.Then,two well-defined capacitive arcs appear,and the charge transfer resistance and corrosion rate remain stable.After a long immersion time,inductive component appears in a low frequency range,the charge transfer resistance decreases and the corrosion rate increases with the immersion time.The fractal dimension obtained from the time records of EIS seems to be a promising tool for the analysis of corrosion morphology because of its direct relationship with the metal surface.
基金This work was financially supported by the National Natural Science Foundation of China (No.20271001).
文摘A novel method for controlled synthesis of crystalline molybdenum dioxides nanowhiskers (whisker-MoO2) by using moderate reductive and precursor ion under hydrothermal conditions is reported. The result shows that the as-obtained samples have a monoclinic structure, and the whisker-MoO2 is composed of nanowires with diameters of ca. 20 nm. Formation of whisker-MoO2 was through a typical precursor-reduction process, in which cetyltrimethylammonium bromide (CTAB) served as a cationic surfactant and acetone as a reductant. The electrochemical behavior of whisker-MoO2 was studied.
基金This work was supported by the Doctoral Program of Higher Education of China (No.20110010110007) and the Beijing Municipal Natural Science Foundation (No.2102035).
文摘In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.