期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:1
1
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes electrochemical energy storage Lithium-ion battery Zinc-ion battery SUPERcapacitor
下载PDF
Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors:Enhancement and mechanism
2
作者 Yuntao Xiao Xinfang Zhang +2 位作者 Can Wang Jinsong Rao Yuxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期35-58,共24页
The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy s... The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage.Unfortunately,the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity,which seriously limit the application of Mg-based materials in supercapacitors.Herein,in this review,more than 70 research papers published in recent 10 years were collected and analyzed.Some representative research works were selected,and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed.The effects of various regulative strategies(such as constructing nanostructures,synthesizing composites,defect engineering,and binder-free synthesis,etc.)on the electrochemical performance and their mechanism are demonstrated using spinelstructured MgX_(2)O_(4) and layered structured Mg-X-LDHs as examples.In addition,the application of magnesium oxide and magnesium hydroxide in electrode materials,MXene's solid spacers and hard templates are introduced.Finally,the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed. 展开更多
关键词 SUPERcapacitor electrochemical energy storage Mg-based materials
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage
3
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured Interconnected porous Scaffolds electrode design electrochemical energy storage
下载PDF
Capacitive energy storage from single pore to porous electrode identified by frequency response analysis 被引量:1
4
作者 Weiheng Li Qiu-An Huang +7 位作者 Yu Li Yuxuan Bai Nan Wang Jia Wang Yongming Hu Yufeng Zhao Xifei Li Jiujun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期384-405,I0010,共23页
Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu... Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore. 展开更多
关键词 Porous electrode Intra-particle pore Inter-particle pore Capacitive energy storage electrochemical impedance spectroscopy Frequency response analysis
下载PDF
MXene-based materials for electrochemical energy storage 被引量:48
5
作者 Xu Zhang Zihe Zhang Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期73-85,共13页
Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics... Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage. 展开更多
关键词 MXene2D materials electrochemical energy storage Batteries Supercapacitors
下载PDF
Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage 被引量:2
6
作者 Xu Liu Gengzhi Sun +6 位作者 Yujiao Gong Cheng-Fang Liu Shi Wang Shihao Xu Xuanli Yang Lei Yang Wen-Yong Lai 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第9期1767-1774,共8页
Efficient energy storage devices,i.e.pseudocapacitors,are being intensively pursued to address the environmental and energy crises.Most high-performance pseudocapacitors are based on inorganic materials,while organic ... Efficient energy storage devices,i.e.pseudocapacitors,are being intensively pursued to address the environmental and energy crises.Most high-performance pseudocapacitors are based on inorganic materials,while organic materials with broader synthetic tunability have attracted increasing interest.Despite recent progress,electron-deficient(n-type)organic pseudocapacitive materials for flexible energy storage are highly demanded yet remain largely unexplored.Here a novel set of n-type perylene diimide(PDI)based conjugated microporous polymers(CMPs),namely,CMP-1,CMP-2 and CMP-3,have been created to integrate excellent desirable characteristics as organic pseudocapacitor electrode materials for flexible energy storage.In light of electron-accepting redox-active sites,hierarchically porous structures,as well as amide-linked networks,the PDI-CMPs electrodes displayed n-type pseudocapacitive behaviors with high capacity(139-205 F g^(-1)at 0.5 A g^(-1)),wide and negative biases(-1.0 to 0 V vs.Ag/AgCl),and long cycling stability.CMP-3 consisting of tetraphenylmethane three-dimensional(3D)building block and PDI units demonstrates not only higher capacitance but also better performance stability because of the higher specific surface area and faster diffusion kinetics as compared to its counterpart CMP-1.Asymmetric supercapacitors(SCs)based on CMP-3 and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT/PSS)exhibited wider potential window(1.8 V)and higher capacitance(17.4 m F cm^(-2))compared with symmetric SCs based on PEDOT/PSS electrodes.Notably,CMP-3 also demonstrates attractive potentials as the anode for rechargeable Li-ion batteries.The study sheds light on the fundamental understanding of the key structural parameters that determine their electrochemical and transport properties,thus opening a new door for the rational design of efficient and stable n-type organic electrode materials for flexible energy storage applications. 展开更多
关键词 flexible energy storage organic pseudocapacitors conjugated microporous polymers n-type electrode materials SUPERcapacitorS
原文传递
New insights on(V_(10)O_(28))^(6-)-based electrode materials for energy storage:a brief review 被引量:2
7
作者 Tao Zhou Ling-Ling Xie +9 位作者 Yu Niu Hao-Ran Xiao Yu-Jie Li Qing Han Xue-Jing Qiu Xin-Li Yang Xian-Yong Wu Li-Min Zhu Huan Pang Xiao-Yu Cao 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1431-1445,共15页
Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIB... Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),zinc-ion batteries(ZIBs),and lithium-sulfur batteries(Li-S batteries).Nevertheless,these batteries still suffer from certain limitations,such as the insufficient capacity and inferior stability in their electrode materials.Therefore,developing a feasible electrode material for Li/Na/Zn ion storage represents a critical challenge.Recently,polyoxovanadates(POVs)materials,particularly decavanadate anion(V_(10)O_(28))^(6-)clusters,have attracted considerate attention as promising battery electrodes,due to their rich multi-electron redox process,high structural stability,simple preparation process,and abundant ligand environment.In this review,we provide an overview of the research progress of(V_(10)O_(28))^(6-)-based materials in various metal-ion battery systems,including LIBs,SIBs,ZIBs,and Li-S batteries.We also discuss the underlying challenges associated with this type of materials,and we provide alternative strategies to overcome these issues.This review aims to facilitate the research and development of the nextgeneration(V_(10)O_(28))^(6-)-based battery materials. 展开更多
关键词 (V_(10)O_(28))^(6-) electrode materials BATTERIES energy storage Progress and perspective
原文传递
Preparation of nano-PANI@MnO_2 by surface initiated polymerization method using as a nano-tubular electrode material:The amount effect of aniline on the microstructure and electrochemical performance 被引量:1
8
作者 Fen Ran Yunlong Yang +5 位作者 Lei Zhao Xiaoqin Niu Dingjun Zhang Lingbin Kong Yongchun Luo Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期388-393,共6页
In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and... In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and the effect of aniline amount on the microstructure and electrochemical performance was investigated. The microstructures and surface morphologies of nano-PANI@MnO2 were characterized by X-ray diffraction,scanning electron microscopy and fourier transformation infrared spectroscope. The electrochemical performance of these composite materials was performed with cyclic voltammetry,charge–discharge test and electrochemical impedance spectroscopy,respectively. The results demonstrate that the feed ratio of aniline to MnO2 played a very important role in constructing the hierarchically nano-structure,which would,hence,determine the electrochemical performance of the materials. Using the templateassisted strategy and controlling the feed ratio of aniline to MnO2,the nanometer tubular structure of nanoPANI@MnO2 was obtained. A maximum specific capacitance of 386 F/g was achieved in aqueous 1 mol/L Na NO3 electrolyte with the potential range from 0 to 0.6 V(vs. SCE). 展开更多
关键词 electrochemical capacitors Nano-PANI@MnO2 electrode materials
下载PDF
Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage 被引量:9
9
作者 Fangqian Wang Denghao Ouyang +3 位作者 Ziyuan Zhou Samuel JPage Dehua Liu Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期247-280,I0007,共35页
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid... Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage. 展开更多
关键词 Lignocellulosic biomass CELLULOSE LIGNIN Power generation energy storage electrode materials
下载PDF
Defect engineering in molybdenum-based electrode materials for energy storage 被引量:3
10
作者 Weixiao Wang Fangyu Xiong +3 位作者 Shaohua Zhu Jinghui Chen Jun Xie Qinyou An 《eScience》 2022年第3期278-294,共17页
Molybdenum-based materials have stepped into the spotlight as promising electrodes for energy storage systems due to their abundant valence states,low cost,and high theoretical capacity.However,the performance of conv... Molybdenum-based materials have stepped into the spotlight as promising electrodes for energy storage systems due to their abundant valence states,low cost,and high theoretical capacity.However,the performance of conventional molybdenum-based electrode materials has been limited by slow diffusion dynamics and deficient thermodynamics.Applying defect engineering to molybdenum-based electrode materials is a viable method for overcoming these intrinsic limitations to realize superior electrochemical performance for energy storage.Herein,we systematically review recent progress in defect engineering for molybdenum-based electrode materials,including vacancy modulation,doping engineering,topochemical substitution,and amorphization.In particular,the essential optimization mechanisms of defect engineering in molybdenum-based electrode materials are pre-sented:accelerating ion diffusion,enhancing electron transfer,adjusting potential,and maintaining structural stability.We also discuss the existing challenges and future objectives for defect engineering in molybdenum-based electrode materials to realize high-energy and high-power energy storage devices. 展开更多
关键词 energy storage Molybdenum-based electrode materials Defect engineering
原文传递
Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions 被引量:2
11
作者 Xian Jian Shiyu Liu +5 位作者 Yuqi Gao Wei Tian Zhicheng Jiang Xiangyun Xiao Hui Tang Liangjun Yin 《Journal of Electrical Engineering》 2016年第2期75-87,共13页
下载PDF
Organic Electrode Materials for Non-aqueous K-Ion Batteries 被引量:1
12
作者 Mingtan Wang Wenjing Lu +1 位作者 Huamin Zhang Xianfeng Li 《Transactions of Tianjin University》 EI CAS 2021年第1期1-23,共23页
The demands for high-performance and low-cost batteries make K-ion batteries(KIBs) considered as promising supplements or alternatives for Li-ion batteries(LIBs). Nevertheless, there are only a small amount of convent... The demands for high-performance and low-cost batteries make K-ion batteries(KIBs) considered as promising supplements or alternatives for Li-ion batteries(LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K^+ ions. Diff erently, organic electrode materials(OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries. 展开更多
关键词 energy storage KIBS Organic electrode materials NON-AQUEOUS
下载PDF
Recent advances in zinc-ion hybrid energy storage: Coloring high-power capacitors with battery-level energy
13
作者 Ling Miao Yaokang Lv +3 位作者 Dazhang Zhu Liangchun Li Lihua Gan Mingxian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期70-77,共8页
Zinc-ion hybrid capacitors(ZICs) are considered as newly-emerging and competitive candidates for energy storage devices due to the integration of characteristic capacitor-level power and complementary battery-level en... Zinc-ion hybrid capacitors(ZICs) are considered as newly-emerging and competitive candidates for energy storage devices due to the integration of characteristic capacitor-level power and complementary battery-level energy. The practical application of rising ZICs still faces the specific capacity and dynamics mismatch between the two electrodes with different energy storage mechanisms, which cannot meet the ever-growing indicator demand for portable electronic displays and public traffic facilities. Focusing on these unresolved issues, this mini-review presents recent advances in ZICs referring to the hybrid energy storage mechanism, design strategies of both capacitor-type and battery-type electrode materials, and electrolyte research toward advanced performances(e.g., high operational potential, wide adaptive temperature). Finally, current challenges and future outlook have been proposed to guide further exploration of next-generation ZICs with a combination of high-power delivery, high-energy output and high-quality service durability. 展开更多
关键词 Zinc-ion hybrid capacitor capacitor-type electrode Battery-type electrode Capacity/dynamics mismatch Zinc-based electrolyte Hybrid energy storage mechanism
原文传递
Nanomaterials for electrochemical energy storage 被引量:6
14
作者 Nian Liu Weiyang Li +1 位作者 Mauro Pasta Yi Cui 《Frontiers of physics》 SCIE CSCD 2014年第3期323-350,共28页
The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electr... The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors. 展开更多
关键词 NANOmaterial energy storage silicon anode sulfur cathode stationary battery electrochemical capacitors
原文传递
Supercapacitor and nanoscale research towards electrochemical energy storage
15
作者 Pai Lu Dongfeng Xue +1 位作者 Hong Yang Yinong Liu 《International Journal of Smart and Nano Materials》 SCIE EI 2013年第1期2-26,共25页
Electrochemical capacitors,also known as supercapacitors or ultracapacitors,have received much attention from research and development to industrialization,owing to their promise to deliver high levels of electrical p... Electrochemical capacitors,also known as supercapacitors or ultracapacitors,have received much attention from research and development to industrialization,owing to their promise to deliver high levels of electrical power and offer long operating lifetimes.They are considered ideal candidates for energy storage in high-power applications.Benefiting from intensive nanoscale research in recent decades,remarkable improvements and development of supercapacitive energy storage systems have been achieved.Both the energy density and power density for supercapacitors have been substantially improved.In this review article,we endeavor to assess the profound impacts of nanoscale research on the development of supercapacitors,in terms of the substantial improvement of capacitive performance for electrode materials,and revolutionary advances in electrode and device configurations.In addition,recent progress in basic energy storage mechanisms and prototypes of supercapacitors are also reviewed,including a new kinetically-favored intercalation mechanism introduced for the first time.The review concludes with descriptions of the demonstration of already-realized practical applications of commercially-available supercapacitor devices,especially focusing on real usage in vehicles that are highly anticipated by future communities to further heighten the wide attention on clean energy storage systems. 展开更多
关键词 SUPERcapacitor nanoscale research electrochemical energy storage electrode material
原文传递
Exploration and progress of high-energy supercapacitors and related electrode materials 被引量:2
16
作者 YANG Mei XIA Hui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1851-1863,共13页
As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, lar... As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices. 展开更多
关键词 超级电容器 电极材料 高能量 能量密度 存储系统 工作电压 高压电容器 功率密度
原文传递
Germanium-Carbdiyne: A 3D Well-Defined sp-Hybridized Carbon-Based Material with Superhigh Li Storage Property 被引量:1
17
作者 Ze Yang Xin Ren +6 位作者 Yuwei Song Xiaodong Li Chunfang Zhang Xiuli Hu Jianjiang He Jiazhu Li Changshui Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期199-206,共8页
Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp... Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on. 展开更多
关键词 3D porous material electrochemical energy storage germanium-carbdiyne lithium storage theoretical predictions
下载PDF
V_(2)CT_(x) MXene and its derivatives:synthesis and recent progress in electrochemical energy storage applications 被引量:7
18
作者 Zhao-Lin Tan Jing-Xuan Wei +4 位作者 Yang Liu Fakhr uz Zaman Wajid Rehman Lin-Rui Hou Chang-Zhou Yuan 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期775-797,共23页
With the continuous development of two-dimensional (2D) transition metal carbides and nitrides(collectively referred to as MXene).Nowadays,more than 70 MXene materials have been discovered,and the number is still incr... With the continuous development of two-dimensional (2D) transition metal carbides and nitrides(collectively referred to as MXene).Nowadays,more than 70 MXene materials have been discovered,and the number is still increasing.Among them,the V_(2)CT_(x) MXene has attracted considerable attentions due to its outstanding physical and chemical properties.In this review,we mainly discussed the emerging V_(2)CT_(x) MXene and its derivative systems in various energy storage devices.Firstly,an introduction of the V-based MXene and its derivatives along with their synthetic methodologies is provided,then we summarize their applications in specific energy storage devices,such as metal (Li,Na,K,Mg,Zn and Al) ion batteries,lithium-sulfur batteries,supercapacitors and metal-ion capacitors.Finally,the main challenges and future perspectives existing in V-based MXene and its derivatives are reasonably put forward. 展开更多
关键词 MXene V_(2)CT_(x) Two-dimensional material DERIVATIVES electrochemical energy storage applications
原文传递
Carbonyl polymeric electrode materials for metal-ion batteries 被引量:4
19
作者 Mi Tang Hongyang Li +1 位作者 Erjing Wang Chengliang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第2期232-244,共13页
Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode mate... Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode materials are promising candidates for the next generation of sustainable energy resources and have attracted extensive attention for the foreseeable large scale applications. The conductive polymers have been utilized as electrode materials in the pioneer reports, which, however, have the disadvantages of low stability, low reversibility and slope voltage due to the delocalization of charges in the whole conjugated systems. The discovery of carbonyl materials aroused the interest of organic and polymeric materials for batteries again. This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesium-ion batteries. This comprehensive review is expected to be helpful forarousing more interest of organic materials for met 展开更多
关键词 Carbonyl polymers Organic lithium-ion batteries Organic sodium-ion batteries energy storage electrode materials
原文传递
Photo-rechargeable batteries and supercapacitors:Critical roles of carbon-based functional materials 被引量:1
20
作者 Liqun Wang Lei Wen +5 位作者 Yueyu Tong Sihui Wang Xinggang Hou Xiaodong An Shi Xue Dou Ji Liang 《Carbon Energy》 CAS 2021年第2期225-252,共28页
As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energ... As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage. 展开更多
关键词 carbon-based materials electrochemical energy storage integrated devices photoelectric conversion solar energy
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部