Single atom catalysts(SACs)are constituted by isolated active metal centers,which are heterogenized on inert supports such as graphene,porous carbon,and amorphous carbon.The thermal stability,electronic properties,and...Single atom catalysts(SACs)are constituted by isolated active metal centers,which are heterogenized on inert supports such as graphene,porous carbon,and amorphous carbon.The thermal stability,electronic properties,and catalytic activities of the metal center can be controlled via manipulating the neighboring heteroatoms such as nitrogen,oxygen,and sulfur.Due to the atomical dispersion of the active catalytic centers,the amount of metal required for catalysis can be decreased.Furthermore,new possibilities are offered to easily control the selectivity of a given transformation process as well as to improve turnover frequencies and turnover numbers of target reactions.Among them,Fe–N–C single atom catalysts own special electronic structure,and have been widely used in many fields of electrocatalysis.This review aims to summarize the synthesis of Fe–N–C based on anchoring individual iron atoms on carbon/graphene.The spin-related properties of Fe–N–C catalysts are described,including the relation between spin and electron structure of Fe–N x as well as the coupling between electronic structure of Fe–N x and electronic(orbit)of CO_(2),N_(2)and O_(2).Next,mechanistic investigations conducted to un-derstand the specific behavior of Fe–N–C catalysts are highlighted,including C,N,O electro-reduction.Finally,some issues related to the future developments of Fe–N–C are put forward and corresponding feasible solutions are offered.展开更多
Atomically dispersed metal sites(ADMSs)play key roles in electrochemical energy conversion.The covalent organic frameworks(COFs)enable the precise control of the chemical compositions and structures at the molecular l...Atomically dispersed metal sites(ADMSs)play key roles in electrochemical energy conversion.The covalent organic frameworks(COFs)enable the precise control of the chemical compositions and structures at the molecular level,making them ideal substrates for supporting ADMSs.In this review,we systematically summarize the recent progress on the design and synthesis of ADMSs in COFs,including embedding molecular catalysts into COFs,immobilizing ADMSs on heteroatom-containing COFs,and preparing COF-derived carbon materials through pyrolysis.The electrocatalytic performance of the resulting catalysts is presented for various electrochemical reactions,involving oxygen reduction reaction(ORR),carbon dioxide reduction reaction(CO_(2)RR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and nitrogen reduction reaction(NRR).The modulation strategies of AMDSs in COFs for enhanced activity,selectivity,and stability are highlighted,together with a perspective of the current challenges and the future opportunities in this field.展开更多
The rapid progress of flexible electronics tremendously stimulates the urgent demands for the matching power supply systems. Flexible transparent electrochemical energy conversion and storage devices (FT–EECSDs), wit...The rapid progress of flexible electronics tremendously stimulates the urgent demands for the matching power supply systems. Flexible transparent electrochemical energy conversion and storage devices (FT–EECSDs), with endurable mechanical flexibility, outstanding optical transmittance, excellent electrochemical performance, and additional intelligent functions, are considered as preferable energy supplies for future self-powered flexible electronic systems. A comprehensive review of the reasonable design of flexible transparent electrode and recent progress on the FT–EECSDs is presented herein. The manufacturing techniques of generally classified three types of flexible transparent electrodes are systematically summarized. Emphasis is given to the recent developments in the transparent solid-state electrolyte, flexible transparent energy conversion, and storage devices. The standard evaluation methods and reasonable evaluation parameters to evaluate the flexibility and transparency of FT–EECSDs are highlighted. Additionally, the typical integrated applications of FT–EECSDs are also described. Finally, the current challenges and a future perspective on the research and development direction are further outlined.展开更多
In the context of peak carbon and carbon neutrality,the utilization of CO_(2)has attracted attention with the aim of reducing carbon emissions by converting CO_(2)into high-value chemicals or energy.Methanol(MeOH),whi...In the context of peak carbon and carbon neutrality,the utilization of CO_(2)has attracted attention with the aim of reducing carbon emissions by converting CO_(2)into high-value chemicals or energy.Methanol(MeOH),which is both a hydrogen and a carbon carrier,is considered the most promising among the CO_(2)-conversion products.This paper focus on routes for electrochemical conversion of CO_(2)to MeOH using green power and green hydrogen to achieve negative CO_(2)emissions.Three feasible technical routes for electrochemical conversion of CO_(2)to MeOH are proposed in this paper:Route 1,electrolysis of water to H_(2)and hydrogenation of CO_(2)to MeOH;Route 2,electrochemical reduction of CO_(2)to MeOH;and Route 3,co-electrolysis of CO_(2)-H_(2)O to syngas and synthesis of MeOH from syngas.Techno-economic assessments of the three routes are conducted using technical maturity surveys,system simulations and cost analyses to provide reference data for route selection for CO_(2)conversion to MeOH in China.Compared with the other routes,Route 1 is advantageous in terms of technical maturity and commercial application prospects.Although Route 1 is presently economically unviable,it is expected to achieve profitability and commercial application in the future with decreases in the cost of renewable power and continuous development of water-electrolysis technology.展开更多
Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel...Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.展开更多
Energy utilization includes two aspects of storage and conversion. Both the density of energy storage and the efficiency of energy conversion are particularly considered in the application of energy. It is well known ...Energy utilization includes two aspects of storage and conversion. Both the density of energy storage and the efficiency of energy conversion are particularly considered in the application of energy. It is well known that chemical energy can be easily stored in chemical substances with high-energy density such as those containing hydrogen and lithium. Meanwhile, chemical energy can be highly converted into clean and efficient electrical energy through the systems of electrochemical energy storage and conversion, which include batteries, fuel cells, and electrochemical capacitors (also called supercapacitors). Thus, the combination of chemical energy and electrochemical reactions makes full use of the advantages of chemical energy and electrical energy. Nowadays, systems of electrochemical energy storage and conversion have already played an important role in powering an increasingly diverse range of applications from electronic devices to cars.展开更多
The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was...The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was proposed to prepare highly graphitized carbon materials from an abundant natural resource-lignin (LG).The preparation process mainly includes pyrolytic carbonization of raw LG material and electrochemical conversion of amorphous carbon precursor.Interestingly,with the assistance of Co catalyst,the graphitization degree of the products was significantly improved,in which the mechanism was the removal of heteroatoms in LG and the rearrangement of carbon atoms into graphite lattice.Furthermore,tunable microstructures (nanoflakes) under catalytic effects could also be observed by controlling the electrolytic parameters.Compared with the products CN1 (without catalyst) and CN5 (with 10%catalyst),the specific surface area are 158.957 and 202.246 m^(2)g^(-1),respectively.When used as the electrode material for lithium-ion batteries,CN5 delivered a competitive specific capacity of~350 m Ah g^(-1)(0.5 C) compared with commercial graphite.The strategy proposed in this work provides an effective way to extract value-added graphite materials from lignin and can be extended to the graphitization conversion of any other amorphous carbon precursor materials.展开更多
Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical...Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.展开更多
Hydrogen,a renewable and outstanding energy carrier with zero carbon dioxide emission,is regarded as the best alternative to fossil fuels.The most preferred route to large-scale production of hydrogen is by water elec...Hydrogen,a renewable and outstanding energy carrier with zero carbon dioxide emission,is regarded as the best alternative to fossil fuels.The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources(e.g.,wind,solar,hydro,and tidal energy).However,the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts.Thus,designing high-effective,stable,and cheap materials for hydrogen evolution reaction(HER)could have a substantial impact on renewable energy technologies.Recently,single-atom catalysts(SACs)have emerged as a new frontier in catalysis science,because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity.Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs.In this review,we discuss recent progress on SACs synthesis,characterization methods,and their catalytic applications.Particularly,we highlight their unique electrochemical characteristics toward HER.Finally,the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.展开更多
The rechargeable Mg-S batteries are attractive because of their resource abundances of Mg and S,high volumetric energy density,and less dendrite property of Mg anodes.However,the development is barred by the intrinsic...The rechargeable Mg-S batteries are attractive because of their resource abundances of Mg and S,high volumetric energy density,and less dendrite property of Mg anodes.However,the development is barred by the intrinsic low electronic conductivity of S and the discharge products as well as the lack of understanding the hidden electrochemical kinetics.Here,a Co_(3)S_(4)@MXene heterostructure is proposed as effective sulfur host for reversible Mg-S batteries.XPS results and density functional theory(DFT)calculation confirm that the chemical interaction between the decorated Co_(3)S_(4)nanocrystals host and polysulfide intermediates could well absorb and catalyze the polysulfides conversion,thus improve the electrochemical redox kinetics.Meanwhile,the MXene matrix could promote Mg ion diffusion dynamics greatly.As a result,the developed Mg-S batteries using the Co_(3)S_(4)@MXene-S as the cathode material could demonstrate high sulfur utilization with specific capacity of 1220 mAh g^(-1) and retain a capacity of 528 mAh g^(-1) after 100 cycles,together with a satisfactory rate performance even at 2 C.This work shed light on the advanced cathode design for reversible high energy Mg-S batteries.展开更多
Sustainable conversion of carbon dioxide(CO_(2))to high value-added chemicals and fuels is a promising solution to solve the problem of excessive CO_(2) emissions and alleviate the shortage of fossil fuels,maintaining...Sustainable conversion of carbon dioxide(CO_(2))to high value-added chemicals and fuels is a promising solution to solve the problem of excessive CO_(2) emissions and alleviate the shortage of fossil fuels,maintaining the balance of the carbon cycle in nature.The development of catalytic system is of great significance to improve the efficiency and selectivity for electrochemical CO_(2) conversion.In particular,bismuth(Bi)based catalysts are the most promising candidates,while confronting challenges.This review aims to elucidate the fundamental issues of efficient and stable Bi-based catalysts,constructing a bridge between the category,synthesis approach and electrochemical performance.In this review,the categories of Bi-based catalysts are firstly introduced,such as metals,alloys,single atoms,compounds and composites.Followed by the statement of the reliable and versatile synthetic approaches,the representative optimization strategies,such as morphology manipulation,defect engineering,component and heterostructure regulation,have been highlighted in the discussion,paving in-depth insight upon the design principles,reaction activity,selectivity and stability.Afterward,in situ characterization techniques will be discussed to illustrate the mechanisms of electrochemical CO_(2) conversion.In the end,the challenges and perspectives are also provided,promoting a systematic understanding in terms of the bottleneck and opportunities in the field of electrochemical CO_(2) conversion.展开更多
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo...Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.展开更多
In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanost...In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.展开更多
The electrochemical reduction of CO2 to capacitive carbon in molten Li2 CO3–Na2 CO3–K2 CO3 is an effective strategy for capturing and utilizing CO2. This paper reports the effects of the cell voltages and operating ...The electrochemical reduction of CO2 to capacitive carbon in molten Li2 CO3–Na2 CO3–K2 CO3 is an effective strategy for capturing and utilizing CO2. This paper reports the effects of the cell voltages and operating temperatures(450–650 °C) of the molten salt electrolysis on the capacitive performance of electrolytic carbon. The electrolytic carbon delivers excellent specific capacitance when the cell voltage is 4.5 V and the temperature of molten salt is 450 °C. The carbon obtained at 450 °C and under 4.5 V delivers a specific capacitance of 550 F g^(-1) at 0.2 A g^(-1) in 1 M aqueous H2 SO4, and the capacity retention rate is73% after 10000 cycles. The specific capacitance of the electrolytic carbon increases as the electrolysis temperature decreases, and the optimal cell voltage is 4.5 V.展开更多
Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,...Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,Co,and Ni as catalysts.When the electrolyte containing Ni O,Co2O3,and Fe_(2)O_(3) was employed,sulfur-doped CNFs in various diameters were obtained.With the introduction of Fe catalyst,the obtained sulfur-doped CNFs showed the smallest and tightest diameter distributions.The obtained sulfur-doped CNFs had high gravimetric capacitance(achieved by SDG-Fe)that could reach 348.5 F/g at 0.5 A/g,excellent cycling stability,and good rate performance.For comparison purposes,both Fe and nickel cathodes were tested,where the active metal atom at their surface could act as catalyst.In these two situations,sulfur-doped graphite sheet and sulfur-doped graphite quasi-sphere were the main products.展开更多
Lithium sulfur(Li-S)batteries are poised to be the next generation of high-density energy storage devices.In recent years,the concept of“electrocatalysis”has been introduced into the field of Li-S batteries,and some...Lithium sulfur(Li-S)batteries are poised to be the next generation of high-density energy storage devices.In recent years,the concept of“electrocatalysis”has been introduced into the field of Li-S batteries,and some transition metals have been proved to catalyze the electrochemical conversion reaction of sulfur species.In this study,carbon encapsulated nickel nanoparticles(Ni@C)with a specific surface area of 146 m^(2)/g are shown to play a definitive electrocatalytic role for the sulfur cathode.With Ni@C incorporated,the Ni@C/G-S electrode achieved a better electrochemical performance than the G-S electrode.Moreover,the reversible capacity and cycle stability were further improved through chemical modifications of the carbon shell.The influence of doping with different elements on the Li-S battery performance was also investigated in detail.Higher specific capacities of 1229 mA·h/g,927 mA·h/g,and 830 mA·h/g were achieved at 0.2 C,0.5 C,and 1.0 C for the N-Ni@C-G/S electrode.Besides,the B-Ni@C-G/S electrode possessed a best cycle stability.展开更多
Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V_(4)O_(9)nearly reached its energy/power ceiling due to th...Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V_(4)O_(9)nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn;storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered Ca V_(4)O_(9)in a tailored electrolyte was developed to introduce dual ions(Ca^(2+) and Zn^(2+)) into bilayer δ-V_(4)O_(9)frameworks forming crystallographic ultra-thin vanadium bronzes,Ca^(2+)Zn^(2+)V_(4)O_(9)·n H;O. The materials deliver transcendental maximum energy and power densities of 366 W h kg-1(478 m A h g^(-1)@ 0.2 A g^(-1)) and 6627 W kg-1(245 m A h g^(-1)@10 A g^(-1)), respectively, and the long cycling stability with a high specific capacity up to 205 m A h g^(-1)after 3000 cycles at10 A g^(-1). The synergistic contributions of dual ions and Ca^(2+) electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced “pillar” effects,charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.展开更多
Due to the unique interface and electronic structure,metal/metal oxide composite electrocatalysts have been designed and exploited for electrocatalytic oxygen evolution reaction(OER)in alkaline solution.However,how to...Due to the unique interface and electronic structure,metal/metal oxide composite electrocatalysts have been designed and exploited for electrocatalytic oxygen evolution reaction(OER)in alkaline solution.However,how to fabricate metal/metal oxides with abundant interfaces and well-dispersed metal phases is a challenge,and the synergistic effect between metal and metal oxides on boosting the electrocatalytic activities is still ambiguous.Herein,by controlling the lithium-induced conversion reaction of metal oxides,metal/metal oxide composites with plentiful interfaces and excellent electrical interconnection are fabricated,which can enhance the active sites,and accelerate the mass transfer during the electrocatalytic reaction.As a result,the electrocatalytic oxygen evolution activities of the as-fabricated metal/metal oxide composite catalysts including NiCo/NiCo2O4,NiMn/NiMn2O4 and CoMn/CoMn2O4 are greatly improved.The catalytic mechanism is also explored using the in-situ X-ray and Raman spectroscopic tracking to uncover the real active centers and the synergistic effect between the metal and metal oxides during water oxidation.Density functional theory plus U(DFT+U)calculation confirms the metal in the composite can optimize the catalytic reaction path and reduce the reaction barrier,thus boosting the electrocatalytic kinetics.展开更多
Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herei...Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.展开更多
With the depletion of fossil fuels and environmental pollution, energy storage and conversion have become the focus of current research. Water splitting and fuel cell technologies have made outstanding contributions t...With the depletion of fossil fuels and environmental pollution, energy storage and conversion have become the focus of current research. Water splitting and fuel cell technologies have made outstanding contributions to energy conversion. However, the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have slow kinetics, which limit the capacity of fuel cells. It is of great significance to develop catalysts for the OER and ORR and continuously improve their catalytic performance. Many studies have shown that intrinsic defects, especially vacancies (anion and cation vacancies), can effectively improve the efficiency of electrochemical energy storage and conversion. The introduction of intrinsic defects can generally expose more active sites, enhance conductivity, adjust the electronic state, and promote ion diffusion, thereby enhancing the catalytic performance. This review comprehensively summarizes the latest developments regarding the effects of intrinsic defects on the performance of non-noble metal electrocatalysts. According to the type of intrinsic defect, this article reviews in detail the regulation mechanism, preparation methods and advanced characterization techniques of intrinsic defects in different materials (oxides, non-oxides, etc.). Then, the current difficulties and future development of intrinsic defect regulation are analyzed and discussed thoroughly. Finally, the prospect of intrinsic defects in the field of electrochemical energy storage is further explored.展开更多
基金We are grateful for the financial support from National Natural Sci-ence Foundation of China(No.21974103)and the start-up funds of Wuhan University.
文摘Single atom catalysts(SACs)are constituted by isolated active metal centers,which are heterogenized on inert supports such as graphene,porous carbon,and amorphous carbon.The thermal stability,electronic properties,and catalytic activities of the metal center can be controlled via manipulating the neighboring heteroatoms such as nitrogen,oxygen,and sulfur.Due to the atomical dispersion of the active catalytic centers,the amount of metal required for catalysis can be decreased.Furthermore,new possibilities are offered to easily control the selectivity of a given transformation process as well as to improve turnover frequencies and turnover numbers of target reactions.Among them,Fe–N–C single atom catalysts own special electronic structure,and have been widely used in many fields of electrocatalysis.This review aims to summarize the synthesis of Fe–N–C based on anchoring individual iron atoms on carbon/graphene.The spin-related properties of Fe–N–C catalysts are described,including the relation between spin and electron structure of Fe–N x as well as the coupling between electronic structure of Fe–N x and electronic(orbit)of CO_(2),N_(2)and O_(2).Next,mechanistic investigations conducted to un-derstand the specific behavior of Fe–N–C catalysts are highlighted,including C,N,O electro-reduction.Finally,some issues related to the future developments of Fe–N–C are put forward and corresponding feasible solutions are offered.
基金supported by the National Natural Science Funds(No.21878226)Innovative Research Group Project of the National Natural Science Foundation of China(No.22121004)。
文摘Atomically dispersed metal sites(ADMSs)play key roles in electrochemical energy conversion.The covalent organic frameworks(COFs)enable the precise control of the chemical compositions and structures at the molecular level,making them ideal substrates for supporting ADMSs.In this review,we systematically summarize the recent progress on the design and synthesis of ADMSs in COFs,including embedding molecular catalysts into COFs,immobilizing ADMSs on heteroatom-containing COFs,and preparing COF-derived carbon materials through pyrolysis.The electrocatalytic performance of the resulting catalysts is presented for various electrochemical reactions,involving oxygen reduction reaction(ORR),carbon dioxide reduction reaction(CO_(2)RR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and nitrogen reduction reaction(NRR).The modulation strategies of AMDSs in COFs for enhanced activity,selectivity,and stability are highlighted,together with a perspective of the current challenges and the future opportunities in this field.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No.52175534,51702095)the science and technology innovation Program of Hunan Province (2021RC3052)+1 种基金the Fundamental Research Funds for the Central Universities (531118010016)Science and Technology Bureau Foundation of Changsha City (kh1904005).
文摘The rapid progress of flexible electronics tremendously stimulates the urgent demands for the matching power supply systems. Flexible transparent electrochemical energy conversion and storage devices (FT–EECSDs), with endurable mechanical flexibility, outstanding optical transmittance, excellent electrochemical performance, and additional intelligent functions, are considered as preferable energy supplies for future self-powered flexible electronic systems. A comprehensive review of the reasonable design of flexible transparent electrode and recent progress on the FT–EECSDs is presented herein. The manufacturing techniques of generally classified three types of flexible transparent electrodes are systematically summarized. Emphasis is given to the recent developments in the transparent solid-state electrolyte, flexible transparent energy conversion, and storage devices. The standard evaluation methods and reasonable evaluation parameters to evaluate the flexibility and transparency of FT–EECSDs are highlighted. Additionally, the typical integrated applications of FT–EECSDs are also described. Finally, the current challenges and a future perspective on the research and development direction are further outlined.
基金supported by National Key R&D Program of China(2017YFB0601900)。
文摘In the context of peak carbon and carbon neutrality,the utilization of CO_(2)has attracted attention with the aim of reducing carbon emissions by converting CO_(2)into high-value chemicals or energy.Methanol(MeOH),which is both a hydrogen and a carbon carrier,is considered the most promising among the CO_(2)-conversion products.This paper focus on routes for electrochemical conversion of CO_(2)to MeOH using green power and green hydrogen to achieve negative CO_(2)emissions.Three feasible technical routes for electrochemical conversion of CO_(2)to MeOH are proposed in this paper:Route 1,electrolysis of water to H_(2)and hydrogenation of CO_(2)to MeOH;Route 2,electrochemical reduction of CO_(2)to MeOH;and Route 3,co-electrolysis of CO_(2)-H_(2)O to syngas and synthesis of MeOH from syngas.Techno-economic assessments of the three routes are conducted using technical maturity surveys,system simulations and cost analyses to provide reference data for route selection for CO_(2)conversion to MeOH in China.Compared with the other routes,Route 1 is advantageous in terms of technical maturity and commercial application prospects.Although Route 1 is presently economically unviable,it is expected to achieve profitability and commercial application in the future with decreases in the cost of renewable power and continuous development of water-electrolysis technology.
基金financially supported by the National Natural Science Foundation of China(51403126,21574080,61306018 and 21504057)Shanghai Committee of Science and Technology(15JC1490500,16JC1400703,and 17ZR1441700)+1 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201702,Fuzhou University)State Key Laboratory of Supramolecular Structure and Materials(sklssm201732,Jinlin University)
文摘Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.
文摘Energy utilization includes two aspects of storage and conversion. Both the density of energy storage and the efficiency of energy conversion are particularly considered in the application of energy. It is well known that chemical energy can be easily stored in chemical substances with high-energy density such as those containing hydrogen and lithium. Meanwhile, chemical energy can be highly converted into clean and efficient electrical energy through the systems of electrochemical energy storage and conversion, which include batteries, fuel cells, and electrochemical capacitors (also called supercapacitors). Thus, the combination of chemical energy and electrochemical reactions makes full use of the advantages of chemical energy and electrical energy. Nowadays, systems of electrochemical energy storage and conversion have already played an important role in powering an increasingly diverse range of applications from electronic devices to cars.
基金supported by National Key R&D Program of China (No. 2022YFC2906100)National Natural Science Foundation of China (Nos. 52074036, 51725401, 51874019 and 52022013)Fundamental Research Funds for the Central Universities (No. FRF-TP-17-002C2)。
文摘The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was proposed to prepare highly graphitized carbon materials from an abundant natural resource-lignin (LG).The preparation process mainly includes pyrolytic carbonization of raw LG material and electrochemical conversion of amorphous carbon precursor.Interestingly,with the assistance of Co catalyst,the graphitization degree of the products was significantly improved,in which the mechanism was the removal of heteroatoms in LG and the rearrangement of carbon atoms into graphite lattice.Furthermore,tunable microstructures (nanoflakes) under catalytic effects could also be observed by controlling the electrolytic parameters.Compared with the products CN1 (without catalyst) and CN5 (with 10%catalyst),the specific surface area are 158.957 and 202.246 m^(2)g^(-1),respectively.When used as the electrode material for lithium-ion batteries,CN5 delivered a competitive specific capacity of~350 m Ah g^(-1)(0.5 C) compared with commercial graphite.The strategy proposed in this work provides an effective way to extract value-added graphite materials from lignin and can be extended to the graphitization conversion of any other amorphous carbon precursor materials.
基金financially supported by Intergovernmental International Science and Technology Innovation Cooperation Project(2019YFE010186)the Hubei Provincial Natural Science Foundation(2019CFB452 and 2019CFB620)the Fundamental Research Funds for the Central Universities。
文摘Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut National de la Recherche Scientifique(INRS)the National Natural Science Foundation of China(516722040)
文摘Hydrogen,a renewable and outstanding energy carrier with zero carbon dioxide emission,is regarded as the best alternative to fossil fuels.The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources(e.g.,wind,solar,hydro,and tidal energy).However,the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts.Thus,designing high-effective,stable,and cheap materials for hydrogen evolution reaction(HER)could have a substantial impact on renewable energy technologies.Recently,single-atom catalysts(SACs)have emerged as a new frontier in catalysis science,because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity.Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs.In this review,we discuss recent progress on SACs synthesis,characterization methods,and their catalytic applications.Particularly,we highlight their unique electrochemical characteristics toward HER.Finally,the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.
基金This work was financially supported by the National Natu-ral Science Foundation of China(No.21603019)the Opening Project of State Key Laboratory of High Performance Ce-ramics and Superfine Microstructure(SKL201807SIC)program for the Hundred Talents Program of Chongqing University.
文摘The rechargeable Mg-S batteries are attractive because of their resource abundances of Mg and S,high volumetric energy density,and less dendrite property of Mg anodes.However,the development is barred by the intrinsic low electronic conductivity of S and the discharge products as well as the lack of understanding the hidden electrochemical kinetics.Here,a Co_(3)S_(4)@MXene heterostructure is proposed as effective sulfur host for reversible Mg-S batteries.XPS results and density functional theory(DFT)calculation confirm that the chemical interaction between the decorated Co_(3)S_(4)nanocrystals host and polysulfide intermediates could well absorb and catalyze the polysulfides conversion,thus improve the electrochemical redox kinetics.Meanwhile,the MXene matrix could promote Mg ion diffusion dynamics greatly.As a result,the developed Mg-S batteries using the Co_(3)S_(4)@MXene-S as the cathode material could demonstrate high sulfur utilization with specific capacity of 1220 mAh g^(-1) and retain a capacity of 528 mAh g^(-1) after 100 cycles,together with a satisfactory rate performance even at 2 C.This work shed light on the advanced cathode design for reversible high energy Mg-S batteries.
文摘Sustainable conversion of carbon dioxide(CO_(2))to high value-added chemicals and fuels is a promising solution to solve the problem of excessive CO_(2) emissions and alleviate the shortage of fossil fuels,maintaining the balance of the carbon cycle in nature.The development of catalytic system is of great significance to improve the efficiency and selectivity for electrochemical CO_(2) conversion.In particular,bismuth(Bi)based catalysts are the most promising candidates,while confronting challenges.This review aims to elucidate the fundamental issues of efficient and stable Bi-based catalysts,constructing a bridge between the category,synthesis approach and electrochemical performance.In this review,the categories of Bi-based catalysts are firstly introduced,such as metals,alloys,single atoms,compounds and composites.Followed by the statement of the reliable and versatile synthetic approaches,the representative optimization strategies,such as morphology manipulation,defect engineering,component and heterostructure regulation,have been highlighted in the discussion,paving in-depth insight upon the design principles,reaction activity,selectivity and stability.Afterward,in situ characterization techniques will be discussed to illustrate the mechanisms of electrochemical CO_(2) conversion.In the end,the challenges and perspectives are also provided,promoting a systematic understanding in terms of the bottleneck and opportunities in the field of electrochemical CO_(2) conversion.
基金the National Natural Science Foun-dation of China(51836006).
文摘Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.
基金supported by the Ministry of Education under AcRF Tier 2 (ARC 19/15, No. MOE2014-T2-2-093 MOE2015-T2-2-057+6 种基金 MOE2016-T2-2-103 MOE2017-T2-1-162)AcRF Tier 1 (2016-T1-001-147 2016-T1-002-051 2017-T1-001-150 2017-T1-002-119)Nanyang Technological University under StartUp Grant (M4081296.070.500000) in Singapore
文摘In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.
基金financially supported by the National Natural Science Foundation of China (21673162)the International Science & Technology Cooperation Program of China (2015DFA90750)。
文摘The electrochemical reduction of CO2 to capacitive carbon in molten Li2 CO3–Na2 CO3–K2 CO3 is an effective strategy for capturing and utilizing CO2. This paper reports the effects of the cell voltages and operating temperatures(450–650 °C) of the molten salt electrolysis on the capacitive performance of electrolytic carbon. The electrolytic carbon delivers excellent specific capacitance when the cell voltage is 4.5 V and the temperature of molten salt is 450 °C. The carbon obtained at 450 °C and under 4.5 V delivers a specific capacitance of 550 F g^(-1) at 0.2 A g^(-1) in 1 M aqueous H2 SO4, and the capacity retention rate is73% after 10000 cycles. The specific capacitance of the electrolytic carbon increases as the electrolysis temperature decreases, and the optimal cell voltage is 4.5 V.
基金the National Natural Science Foundation of China(No.51804056)the Fundamental Research Funds for the Central Universities(No.2019CDXYCL0031)the Fundamental and Frontier Research Project of Chongqing,China(No.cstc2019jcyjmsxm X0230)。
文摘Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,Co,and Ni as catalysts.When the electrolyte containing Ni O,Co2O3,and Fe_(2)O_(3) was employed,sulfur-doped CNFs in various diameters were obtained.With the introduction of Fe catalyst,the obtained sulfur-doped CNFs showed the smallest and tightest diameter distributions.The obtained sulfur-doped CNFs had high gravimetric capacitance(achieved by SDG-Fe)that could reach 348.5 F/g at 0.5 A/g,excellent cycling stability,and good rate performance.For comparison purposes,both Fe and nickel cathodes were tested,where the active metal atom at their surface could act as catalyst.In these two situations,sulfur-doped graphite sheet and sulfur-doped graphite quasi-sphere were the main products.
基金This work was financially supported by the China Petrochemical Corporation(218025-9).
文摘Lithium sulfur(Li-S)batteries are poised to be the next generation of high-density energy storage devices.In recent years,the concept of“electrocatalysis”has been introduced into the field of Li-S batteries,and some transition metals have been proved to catalyze the electrochemical conversion reaction of sulfur species.In this study,carbon encapsulated nickel nanoparticles(Ni@C)with a specific surface area of 146 m^(2)/g are shown to play a definitive electrocatalytic role for the sulfur cathode.With Ni@C incorporated,the Ni@C/G-S electrode achieved a better electrochemical performance than the G-S electrode.Moreover,the reversible capacity and cycle stability were further improved through chemical modifications of the carbon shell.The influence of doping with different elements on the Li-S battery performance was also investigated in detail.Higher specific capacities of 1229 mA·h/g,927 mA·h/g,and 830 mA·h/g were achieved at 0.2 C,0.5 C,and 1.0 C for the N-Ni@C-G/S electrode.Besides,the B-Ni@C-G/S electrode possessed a best cycle stability.
基金supported by the Engineering and Physical Sciences Research Council (EPSRC, EP/V027433/1) of UKthe National Key Research and Development Program of China (2018YFA0704502 and 2017YFA0700103)+2 种基金the National Natural Science Foundation of China (21703248)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the Royal Society (RGSR1211080, IESR2212115) of UK。
文摘Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V_(4)O_(9)nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn;storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered Ca V_(4)O_(9)in a tailored electrolyte was developed to introduce dual ions(Ca^(2+) and Zn^(2+)) into bilayer δ-V_(4)O_(9)frameworks forming crystallographic ultra-thin vanadium bronzes,Ca^(2+)Zn^(2+)V_(4)O_(9)·n H;O. The materials deliver transcendental maximum energy and power densities of 366 W h kg-1(478 m A h g^(-1)@ 0.2 A g^(-1)) and 6627 W kg-1(245 m A h g^(-1)@10 A g^(-1)), respectively, and the long cycling stability with a high specific capacity up to 205 m A h g^(-1)after 3000 cycles at10 A g^(-1). The synergistic contributions of dual ions and Ca^(2+) electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced “pillar” effects,charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.
基金the National Natural Science Foundation of China(21603157)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the support of Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies and Soochow University Analysis and Testing Center。
文摘Due to the unique interface and electronic structure,metal/metal oxide composite electrocatalysts have been designed and exploited for electrocatalytic oxygen evolution reaction(OER)in alkaline solution.However,how to fabricate metal/metal oxides with abundant interfaces and well-dispersed metal phases is a challenge,and the synergistic effect between metal and metal oxides on boosting the electrocatalytic activities is still ambiguous.Herein,by controlling the lithium-induced conversion reaction of metal oxides,metal/metal oxide composites with plentiful interfaces and excellent electrical interconnection are fabricated,which can enhance the active sites,and accelerate the mass transfer during the electrocatalytic reaction.As a result,the electrocatalytic oxygen evolution activities of the as-fabricated metal/metal oxide composite catalysts including NiCo/NiCo2O4,NiMn/NiMn2O4 and CoMn/CoMn2O4 are greatly improved.The catalytic mechanism is also explored using the in-situ X-ray and Raman spectroscopic tracking to uncover the real active centers and the synergistic effect between the metal and metal oxides during water oxidation.Density functional theory plus U(DFT+U)calculation confirms the metal in the composite can optimize the catalytic reaction path and reduce the reaction barrier,thus boosting the electrocatalytic kinetics.
基金supported by the National Natural Science Foundation of China (52161025)the Natural Science Foundation of Gansu Province (20JR10RA241)。
文摘Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.
基金This work was financially supported by the National Natu-ral Science Foundation of China(12025503,U1867215,11875211,U1932134,12105208)Hubei Provincial Natural Science Foundation(2019CFA036)+1 种基金the Fundamental Research Funds for the Central Universities(2042021kf0068)China Postdoctoral Science Foundation(No.2020M682469).
文摘With the depletion of fossil fuels and environmental pollution, energy storage and conversion have become the focus of current research. Water splitting and fuel cell technologies have made outstanding contributions to energy conversion. However, the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have slow kinetics, which limit the capacity of fuel cells. It is of great significance to develop catalysts for the OER and ORR and continuously improve their catalytic performance. Many studies have shown that intrinsic defects, especially vacancies (anion and cation vacancies), can effectively improve the efficiency of electrochemical energy storage and conversion. The introduction of intrinsic defects can generally expose more active sites, enhance conductivity, adjust the electronic state, and promote ion diffusion, thereby enhancing the catalytic performance. This review comprehensively summarizes the latest developments regarding the effects of intrinsic defects on the performance of non-noble metal electrocatalysts. According to the type of intrinsic defect, this article reviews in detail the regulation mechanism, preparation methods and advanced characterization techniques of intrinsic defects in different materials (oxides, non-oxides, etc.). Then, the current difficulties and future development of intrinsic defect regulation are analyzed and discussed thoroughly. Finally, the prospect of intrinsic defects in the field of electrochemical energy storage is further explored.