This work presents an electrochemical extraction of cerium and synthesization of Al–Ce alloy in LiCl–KCl melts on Mo and Al electrodes by chlorination of CeO2 using AlCl3 at 873 K. The cyclic voltammogram on Mo elec...This work presents an electrochemical extraction of cerium and synthesization of Al–Ce alloy in LiCl–KCl melts on Mo and Al electrodes by chlorination of CeO2 using AlCl3 at 873 K. The cyclic voltammogram on Mo electrodes in LiCl–KCl–CeO2 melt showed no obvious reduction wave other than the reduction of Li(I). After the addition of AlCl3, the signals of the reaction of Ce(ⅡI)/Ce(0) and the synthesization of Al–Ce and Al–Li alloys were investigated by cyclic voltammetry, square-wave voltammetry, open-circuit chronopotentiometry and chronopotentiometry. These results indicated that AlCl3 can chloridize CeO2 and that it is possible to extract cerium and form Al–Ce and Al–Li–Ce alloys in LiCl–KCl–CeO2–AlCl3 melts. According to potentiostatic electrolysis, only the Al4 Ce layer coated the Al electrodes. According to galvanostatic electrolysis, Al–Ce(Al4Ce, Al3 Ce, and Al92Ce8), Al2Li3, and Al phases were formed on Mo electrodes, and the content of cerium in the Al–Li–Ce alloys was more than 17 wt%.展开更多
The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 ...The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.展开更多
The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that w...The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that when ECE treatment is removed, HCP becomes more negative and corrosion current becomes larger in comparison to those before ECE treatment, then HCP shifts positively and corrosion current decreases with time. After 30 days ECE treatment, the HCP of cored specimens turn to about -100 mV due to the existence of sufficient oxygen around the exposed steel bars, but for un-cored specimens, longer time, about two months, is to be taken. The non-homogeneous HCP distribution at different layers of the same specimen after ECE treatment might induce secondary corrosion of steels.展开更多
Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of ex...Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.展开更多
Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and...Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.展开更多
Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment incl...Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.展开更多
Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological...Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using comm...The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.展开更多
The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly env...The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.展开更多
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro...Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.展开更多
Effective extraction and regeneration of radioactive iodide is one of urgent concerns for the safe utilization of nuclear energy.As a novel environmentally benign ion separation technique,electrochemically switched io...Effective extraction and regeneration of radioactive iodide is one of urgent concerns for the safe utilization of nuclear energy.As a novel environmentally benign ion separation technique,electrochemically switched ion extraction(ESIE)process can be applied for effective capture and recovery of iodide ions(I^(-)).Herein,a novel kelp seaweed-like core/shell I^(-)imprinted polypyrrole@bismuth oxyiodide(PPy/I^(-)@BiOI)composite film is successfully prepared for the selective I^(-)capture in the ESIE system.It is found that the I^(-)can be easily trapped in the PPy/I^(-)@BiOI film after I^(-)is in situ desorbed from the film by an electrochemical reduction process since it offers particular electroactive binding sites for I^(-)extraction.The I^(-)imprinted PPy/I^(-)@BiOI film displays an extraction capacity as high as 325.2 mg·g^(-1)for I^(-)with favorable stability.In particular,the extraction and desorption of I^(-)is achieved by adjusting the redox potential and the pristine PPy/I^(-)@BiOI film can be regenerated and reused for multiple times without decrease in extraction capacity.It is expected that such a PPy/I^(-)@BiOI film would be useful as an electrochemically switched renewable extractor that could capture and regenerate I^(-)from radioactive water.展开更多
Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type...Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.展开更多
With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was inv...With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.展开更多
基金supported by the High Technology Research and Development Program of China(2011AA03A409)the National Natural Science Foundation of China(51104050,91326113,21271054,21173060)+6 种基金the Natural Science Foundation of Heilongjiang Province(E201413)China Postdoctoral Science Foundation(20110491029)the HeilongJiang Postdoctoral Fund(LBH-Z10208)the Heilongjiang Educational Commission Foundation(12513045)the Fundamental Research Funds for the Central Universities(HEUCFD1415)the Scientific Technology Bureau of Harbin(2012RFQXS102)the Basic Research Foundation of Harbin Engineering University(HEUFT08031)
文摘This work presents an electrochemical extraction of cerium and synthesization of Al–Ce alloy in LiCl–KCl melts on Mo and Al electrodes by chlorination of CeO2 using AlCl3 at 873 K. The cyclic voltammogram on Mo electrodes in LiCl–KCl–CeO2 melt showed no obvious reduction wave other than the reduction of Li(I). After the addition of AlCl3, the signals of the reaction of Ce(ⅡI)/Ce(0) and the synthesization of Al–Ce and Al–Li alloys were investigated by cyclic voltammetry, square-wave voltammetry, open-circuit chronopotentiometry and chronopotentiometry. These results indicated that AlCl3 can chloridize CeO2 and that it is possible to extract cerium and form Al–Ce and Al–Li–Ce alloys in LiCl–KCl–CeO2–AlCl3 melts. According to potentiostatic electrolysis, only the Al4 Ce layer coated the Al electrodes. According to galvanostatic electrolysis, Al–Ce(Al4Ce, Al3 Ce, and Al92Ce8), Al2Li3, and Al phases were formed on Mo electrodes, and the content of cerium in the Al–Li–Ce alloys was more than 17 wt%.
基金Project(IRT0518) supported by the Program of Innovative Team of the Ministry of Education of China
文摘The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.
基金the National Natural Science Foundation of China(No.50602016)the Science and Technology Promotion Project of Guangdong Province(No.2005B3280100)+1 种基金Research Fund of Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology of Ministry of Education(No.200500A)Silicate Material Engineering of Ministry of Education(No.SYSJJ2006-07)
文摘The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that when ECE treatment is removed, HCP becomes more negative and corrosion current becomes larger in comparison to those before ECE treatment, then HCP shifts positively and corrosion current decreases with time. After 30 days ECE treatment, the HCP of cored specimens turn to about -100 mV due to the existence of sufficient oxygen around the exposed steel bars, but for un-cored specimens, longer time, about two months, is to be taken. The non-homogeneous HCP distribution at different layers of the same specimen after ECE treatment might induce secondary corrosion of steels.
文摘Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.
文摘Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.
文摘Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.
基金the Horizon Europe Project“Batteries reuse and direct production of high performances cathodic and anodic materials and other raw materials from batteries recycling using low cost and environmentally friendly technologies” (RHINOCEROS project,grant no.101069685)。
文摘Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
文摘The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.
基金supported by the National Natural Science Foundation of China (21878133, 21908082, 22178154)the Natural Science Foundation of Jiangsu Province (BK20190854)+1 种基金the China Postdoctoral Science Foundation (2020M671364, 2021M701472)the Science & Technology Foundation of Zhenjiang (GY2020027)。
文摘The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.
基金Supported by the National Natural Science Foundation of China(41201303,20807028,41372262)the Fundamental Research for the Central Universities(14CX02052A,14CX02191A)+1 种基金the Qingdao Science and Technology Program for young scientists(14-2-4-86-jch)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF13023)
文摘Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.
基金supported by the National Natural Science Foundation of China(U21A20303,22108188,U20A20141)the National Key Research and Development Program of China(2017YFE0129200)+1 种基金the Natural Science Foundation of Shanxi Province(201901D211054)JSPS KAKENHI Grant 19K12395,Japan。
文摘Effective extraction and regeneration of radioactive iodide is one of urgent concerns for the safe utilization of nuclear energy.As a novel environmentally benign ion separation technique,electrochemically switched ion extraction(ESIE)process can be applied for effective capture and recovery of iodide ions(I^(-)).Herein,a novel kelp seaweed-like core/shell I^(-)imprinted polypyrrole@bismuth oxyiodide(PPy/I^(-)@BiOI)composite film is successfully prepared for the selective I^(-)capture in the ESIE system.It is found that the I^(-)can be easily trapped in the PPy/I^(-)@BiOI film after I^(-)is in situ desorbed from the film by an electrochemical reduction process since it offers particular electroactive binding sites for I^(-)extraction.The I^(-)imprinted PPy/I^(-)@BiOI film displays an extraction capacity as high as 325.2 mg·g^(-1)for I^(-)with favorable stability.In particular,the extraction and desorption of I^(-)is achieved by adjusting the redox potential and the pristine PPy/I^(-)@BiOI film can be regenerated and reused for multiple times without decrease in extraction capacity.It is expected that such a PPy/I^(-)@BiOI film would be useful as an electrochemically switched renewable extractor that could capture and regenerate I^(-)from radioactive water.
基金the National Natural Science Foundation of China(No.51704060)the Fundamental Research Funds for the Central Universities(No.N172505002)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B16009)。
文摘Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.
文摘With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.