期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
INFLUENCE OF MAGNETIC FIELD ON ACCURACY OF ECM BY CHANGING THE CONDUCTIVITY OF ANODE FILM 被引量:3
1
作者 FAN Zhijian ZHANG Lixin TANG lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期11-14,共4页
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve... The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis. 展开更多
关键词 Magnetic field Passive electrolyte Anode film Conductivity Magnetic assisted electrochemical machining(MAECM) Scanning electron microscopy(SEM)
下载PDF
A new two-dimensional experimental apparatus for electrochemical remediation processes
2
作者 顾莹莹 付融冰 +1 位作者 李鸿江 安慧 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1389-1397,共9页
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro... Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization. 展开更多
关键词 electrochemical extraction 2D experimental apparatus Non-uniform electrical field Gas generation rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部