期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural(HMF) towards 2,5-bis(hydroxymethy)furan (BHMF) 被引量:2
1
作者 Mengxia Li Tianxi Zheng +7 位作者 Dongfei Lu Shiwei Dai Xin Chen Xinchen Pan Dibo Dong Rengui Weng Gang Xu Fanan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期101-111,共11页
The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide poten... The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes. 展开更多
关键词 electrochemical hydrogenation Biomass conversion 5-HYDROXYMETHYLFURFURAL Cu electrode Facet effect
下载PDF
Electrochemical hydrogenation of mixed-phase TiO2 nanotube arrays enables remarkably enhanced photoelectrochemical water splitting performance 被引量:4
2
作者 Jiaqin Liu Mengjia Dai +6 位作者 Jian Wu Ying Hu Qi Zhang Jiewu Cui Yan Wang Hark Hoe Tan Yucheng Wu 《Science Bulletin》 SCIE EI CSCD 2018年第3期194-202,共9页
We first report that photoelectrochemical (PEC) performance of electrochemically hydrogenated TiO2 nanotube arrays (TNTAs) as high-efficiency photoanodes for solar water splitting could be well tuned by designing ... We first report that photoelectrochemical (PEC) performance of electrochemically hydrogenated TiO2 nanotube arrays (TNTAs) as high-efficiency photoanodes for solar water splitting could be well tuned by designing and adjusting the phase structure and composition of TNTAs. Among various TNTAs annealed at different temperature ranging from 300 to 700℃, well-crystallized single anatase (A) phase TNTAs-400 photoanode shows the best photoresponse properties and PEC performance due to the favor- able crystallinity, grain size and tubular structures. After electrochemical hydrogenation (EH). anatase- rutile (A-R) mixed phase EH-TNTAs-600 photoanode exhibits the highest photoactivity and PEC perfor- mance for solar water splitting. Under simulated solar illumination, EH-TNTAs-600 achieves the best photoconversion efficiency of up to 1.52% and maximum H2 generation rate of 40.4 ~mol h i cm-2, our- stripping other EH-TNTAs photoanodes. Systematic studies reveal that the signigicantly enhanced PEC performance for A-R mixed phaes EH-TNTAs-600 photoanode could be attributed to the synergy of A-R mixed phases and intentionally introduced Ti3~ (oxygen vacancies) which enhances the photoactivity over both UV and visible-light regions, and boosts both charge separation and transfer efficiencies. These findings provide new insight and guidelines for the construction of highly efficient TiO2-based devices for the application of solar water splitting. 展开更多
关键词 TNTAs electrochemical hydrogenation Phase Photoelectrochemistry Hydrogen generation
原文传递
Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide 被引量:2
3
作者 Shuai Fan Huiyuan Cheng +4 位作者 Manman Feng Xuemei Wu Zihao Fan Dongwei Pan Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期144-153,共10页
The conversion of CO_(2) electrocatalytic hydrogenation into energy-rich fuel is considered to be the most effective way to carbon recycle.Nitrogen-doping carbonized ZIF-8 is proposed as carrier of the earth-rich Sn c... The conversion of CO_(2) electrocatalytic hydrogenation into energy-rich fuel is considered to be the most effective way to carbon recycle.Nitrogen-doping carbonized ZIF-8 is proposed as carrier of the earth-rich Sn catalyst to overcome the limit of electron transfer and CO_(2) adsorption capacity of Sn.Hierarchically porous structure of Sn doped carbonized ZIF-8 is controlled by hydrothermal and carbonization conditions,which induces much higher specific surface area than that of the commercial Sn nanoparticle(1003.174 vs.7.410 m^(2)·g^(-1)).The shift of nitrogen peaks in X-ray Photoelectron Spectroscopy spectra indicates interaction between ZIF-8 and Sn,which induces the shift of electron cloud from Sn to the chemical nitrogen to enhance conductivity and regulate electron transfer from catalyst to CO_(2).Lower mass transfer resistance and Warburg resistance are investigated through EIS,which significantly improves the catalytic activity for CO_(2) reduction reaction(CO_(2)RR).Onset potential of the reaction is reduced from-0.74 V to less than-0.54 V vs.RHE.The total Faraday efficiency of HCOOH and CO reaches 68.9%at-1.14 V vs.RHE,which is much higher than that of the commercial Sn(45.0%)and some other Sn-based catalyst reported in the literature. 展开更多
关键词 Carbon dioxide ELECTROCHEMISTRY Selective catalytic reduction electrochemical hydrogen pump Nitrogen-doping carbonized ZIF-8
下载PDF
Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg_2Ni-type alloys prepared by melt-spinning 被引量:4
4
作者 张羊换 吕科 +3 位作者 赵栋梁 郭世海 祁焱 王新林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期502-511,共10页
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a ... The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy electrochemical hydrogen storage MELT-SPINNING substituting Ni with Mn
下载PDF
Effect of Ni,Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties 被引量:5
5
作者 Chenguang Zhang Jiajun Li +3 位作者 Chunsheng Shi Chunnian He Enzuo Liu Naiqin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期324-330,共7页
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy c... Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system. 展开更多
关键词 carbon nano-onion NICKEL iron iron-nickel alloy electrochemical hydrogen storage property
下载PDF
Electrochemical hydrogen compression and purification versus competing technologies: Part Ⅱ. Challenges in electrocatalysis 被引量:4
6
作者 Marine Trégaro Maha Rhandi +2 位作者 Florence Druart Jonathan Deseure Marian Chatenet 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期770-782,共13页
Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil... Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil feedstock(and to a minor extent from biomass);in consequence the present hydrogen gas on the market is containing non-negligible amounts of impurities that prevent its immediate usage in specialty chemistry or as an energy carrier in fuel cells, e.g. in transportation applications(cars, buses, trains, boats, etc.) that gradually spread on the planet. For these purposes, hydrogen must be of sufficient purity but also sufficiently compressed(at high pressures, typically 70 MPa), rendering purification and compression steps unavoidable in the hydrogen cycle. As shown in the first part of this contribution "Electrochemical hydrogen compression and purification versus competing technologies: Part I. pros and cons", electrochemical hydrogen compressors(EHCs), which enable both hydrogen purification and compression, exhibit many theoretical(thermodynamic) and practical(kinetics) advantages over their mechanical counterparts. However, in order to be competitive, EHCs must operate in very intensive conditions(high current density and low cell voltage) that can only be reached if their core materials, e.g. the membrane and the electrodes/electrocatalysts, are optimized. This contribution will particularly focus on the properties electrocatalysts must exhibit to be used in EHCs: they shall promote(very) fast hydrogen oxidation reaction(HOR) in presence of impurities, which implies that they are(very) tolerant to poisons as well. This consists of a prerequisite for the operation of the anode of an EHC used for the purification-compression of hydrogen, and the materials developed for poison-tolerance in the vast literature on low-temperature fuel cells, may not always satisfy these two criteria, as this contribution will review. 展开更多
关键词 electrochemical hydrogen compression electrochemical hydrogen purification ELECTROCATALYSTS Hydrogen oxidation Poison tolerance
下载PDF
Electrochemical hydrogen compression and purification versus competing technologies: Part Ⅰ. Pros and cons 被引量:3
7
作者 Maha Rhandi Marine Trégaro +2 位作者 Florence Druart Jonathan Deseure Marian Chatenet 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期756-769,共14页
It is undisputed that hydrogen will play a great role in our future energetic mix, because it enables the storage of renewable electricity(power-to-H2) and the reversible conversion into electricity in fuel cell, not ... It is undisputed that hydrogen will play a great role in our future energetic mix, because it enables the storage of renewable electricity(power-to-H2) and the reversible conversion into electricity in fuel cell, not to speak of its wide use in the(petro)chemical industry. Whereas in these applications, pure hydrogen is required, today’s hydrogen production is still largely based on fossil fuels and can therefore not be considered pure. Therefore, purification of hydrogen is mandatory, at a large scale. In addition, hydrogen being the lightest gas, its volumetric energy content is well-below its competing fuels, unless it is compressed at high pressures(typically 70 MPa), making compression unavoidable as well. This contribution will detail the means available today for both purification and for compression of hydrogen. It will show that among the available technologies, the electrochemical hydrogen compressor(EHC), which also enables hydrogen purification, has numerous advantages compared to the classical technologies currently used at the industrial scale. EHC has their thermodynamic and operational advantages, but also their ease of use. However, the deployment of EHCs will be viable only if they reach sufficient performances, which implies some specifications that their base materials should stick to. The present contribution will detail these specifications. 展开更多
关键词 electrochemical hydrogen compression Hydrogen energy electrochemical hydrogen purification Thermdynamics EFFICIENCY
下载PDF
Improved electrochemical hydrogen storage properties of Mg-Y thin films as a function of substrate temperature 被引量:1
8
作者 Yanyan Wang Gongbiao Xin +4 位作者 Chongyun Wang Huiyu Li Wei Li Jie Zheng Xingguo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期287-290,共4页
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f... Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films. 展开更多
关键词 Mg-Y thin films substrate temperature electrochemical hydrogen storage discharge capacity cyclic stability metal hydride/nickel secondary batteries
下载PDF
Towards electrochemical hydrogen storage in liquid organic hydrogen carriers via proton-coupled electron transfers 被引量:1
9
作者 Hamid Ghorbani Shiraz Mikhail Vagin +7 位作者 Tero-Petri Ruoko Viktor Gueskine Krzysztof Karon Mieczystaw tapkowski Tobias Abrahamsson Thomas Ederth Magnus Berggren Xavier Crispin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期292-300,I0007,共10页
Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO_(2).A possible solution for the transport of H_(2)in a safe and low-cost way is in the fo... Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO_(2).A possible solution for the transport of H_(2)in a safe and low-cost way is in the form of liquid organic hydrogen carriers(LOHCs).As an alternative to loading LOHC with H_(2)via a two-step procedure involving preliminary electrolytic production of H_(2)and subsequent chemical hydrogenation of the LOHC,we explore here the possibility of electrochemical hydrogen storage(EHS)via conversion of proton of a proton donor into a hydrogen atom involved in covalent bonds with the LOHC(R)via a protoncoupled electron transfer(PCET)reaction:2nH^(+)+2ne^(-)+Rox■n H_(2)^(0)Rred.We chose 9-fluorenone/fluorenol(Fnone/Fnol)conversion as such a model PCET reaction.The electrochemical activation of Fnone via two sequential electron transfers was monitored with in-situ and operando spectroscopies in absence and in presence of different alcohols as proton donors of different reactivity,which enabled us to both quantify and get the mechanistic insight on PCET.The possibility of hydrogen extraction from the loaded carrier molecule was illustrated by chemical activation. 展开更多
关键词 Proton-coupled electron transfer electrochemical hydrogen storage Hydrogen bonding agent Anion-radical Comproportionation
下载PDF
Corrosion Rate of Hydrogenation to C110 Casing in High H_2S Environment 被引量:1
10
作者 张智 LI Changjin +1 位作者 ZHANG Jiyin SHI Tahe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1081-1083,共3页
The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied, and a basis for the materials selection of sour gas well bushing was provided in H2S, CO2 and saline coex... The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied, and a basis for the materials selection of sour gas well bushing was provided in H2S, CO2 and saline coexisting environment. Under acidic condiction, hydrogen atoms greatly entered into the material and caused the material properties changed. Weight loss method was used to study the corrosion rate of hydrogen charging samples and original untreated samples in simulated oil field environment. PAR2273 electrochemical workstation was used to examine the electrochemical performance of samples untreated, hydrogen charging after reacting in autoclave. The corrosion product film was observed through SEM. The experimental results show that sample with hydrogen charging has a much more obvious partial corrosion and pitting corrosion than the untreated blank sample even the downhole corrosion speed of bushing is increased after being used for a period of time. Polarization curve shows the corrosion tendency is the same between sample with or without hydrogen charging and corrosion tendency is reduced by corrosion product film. A layer of dense product film formed on the surface of samples provides a certain protective effect to the matrix, but cracked holes which will accelerate partial corrosion of the sample were also observed. 展开更多
关键词 electrochemical hydrogen charging H28/CO2 WEIGHTLESSNESS oil casing electrochemicalPROPERTIES high temperature and high pressure acidic environment
下载PDF
Research Surveys of Electrochemical Sensors for in-situ Determining Hydrogen in Steels 被引量:1
11
作者 Gang YU, Xueyuan ZHANG and Yuanlong DU (State Key Laboratory for Corrosion and Protection, Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期305-310,共6页
The principle, construction and application of two types of electrochemical sensors-amperometric and potentiometric are surveyed. Both types of sensors are very sensitive to changes in temperature. The accuracy of hyd... The principle, construction and application of two types of electrochemical sensors-amperometric and potentiometric are surveyed. Both types of sensors are very sensitive to changes in temperature. The accuracy of hydrogen measurement depends on both the precision of sensors developed and the reliable technique of installation and security of sensors. The two types of sensors have been used for in-situ determining hydrogen permeated in steels owing to a corrosive reaction, a hydrogen gas circumstance at elevated temperatures and high pressure or also a pretreatment process such as pickling and plating process, etc. 展开更多
关键词 Research Surveys of electrochemical Sensors for in-situ Determining Hydrogen in Steels NIO
下载PDF
A NEW INTELLIGENT AMPEROMETRIC TYPE OF ELECTROCHEMICAL HYDROGEN PROBE
12
作者 X.Y. Zhang G. Yu and Y.L. Du(State Key Lab for Corrosion and Protection, Institute of Corrosion and Protection of Metals, The Chinese Academy of Sciences, Shenyang 110015, China )Manuscript receivedin revised form 17 September 1998 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第2期160-166,共7页
A new intelligent amperometric type of electrochemical hydrogen probe to measure hydrogen atom permeation rate in the metals was devised and developed. Combined with MCS51 single slice computer system, specially progr... A new intelligent amperometric type of electrochemical hydrogen probe to measure hydrogen atom permeation rate in the metals was devised and developed. Combined with MCS51 single slice computer system, specially programmed software was designed for data sampling, logging, storing, processing, result judgment and data output controlling. The probe is portable and can be used in both lab and in site automatically. 展开更多
关键词 electrochemical hydrogen probe hydmpen permeation current steel sheet UNS G11180 steel H2S corrosion
下载PDF
ELECTROCHEMICAL PROPERTIES OF THE HYDROGEN ABSORPTION OF AMORPHOUS Ml-Ni ALLOY FILMS
13
作者 HU Weikang ZHANG Yunshi +2 位作者 SONG Deying LUO Daojun WANG Yun(Institute of New Energy Material Chemistry.Nankai University.Tianjin.China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第2期123-125,共3页
The amorphous Ml-Ni films were prepared by means of ion beam sputtering the electrochemical hydrogen storage,discharge ability and durability of amorphous film electrodes are investigated,The results show that the max... The amorphous Ml-Ni films were prepared by means of ion beam sputtering the electrochemical hydrogen storage,discharge ability and durability of amorphous film electrodes are investigated,The results show that the maximum capacities of the amorphous MlNi_(1.79),MlNi_(2.52),and MlNi_(3.44) samples are 90,100 and 142 mAh/g,respectively,and the MlNi_(3.44) amorphous film does not off and disintegrate into fine particles a fier more than 580 cycles. 展开更多
关键词 amorphous film.Ml-Ni alloy electrochemical hydrogen absorption
下载PDF
Electrochemical Hydrogen Absorbing/Desorbing Behavior of Double Phase Mg-Ni Alloy
14
作者 刘卫红 《Journal of Shanghai University(English Edition)》 CAS 2002年第4期349-352,共4页
The electrochemical performance of double phase Mg Ni alloy was characterized at 25°C and 70°C, in order to evaluate briefly its utility as negative electrode materials in nickel metal hydride batteries. ... The electrochemical performance of double phase Mg Ni alloy was characterized at 25°C and 70°C, in order to evaluate briefly its utility as negative electrode materials in nickel metal hydride batteries. The results show that the electrochemical capacity of double phase Mg Ni alloy is rarely low at 25°C, but increased rapidly when the temperature is enhanced, and the double phase Mg Ni alloy has its maximum capacity at the first discharge cycle, but the capacity degrades rapidly with cycling number. 展开更多
关键词 electrochemical hydrogen absorbing/desorbing double phase Mg Ni alloy.
下载PDF
Recent Progress on Electrocatalytic Valorization of Biomass-Derived Organics 被引量:4
15
作者 Ming Yang Zhenran Yuan +2 位作者 Rixin Peng Shuangyin Wang Yuqin Zou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1117-1138,共22页
Electrocatalytic valorization of biomass derivatives can be powered by electricity generated from renewable sources such as solar and wind energy.A shift from centralized,high-temperature,and energy-intensive processe... Electrocatalytic valorization of biomass derivatives can be powered by electricity generated from renewable sources such as solar and wind energy.A shift from centralized,high-temperature,and energy-intensive processes to decentralized,low-temperature conversions is achieved,which meets the requirement of sustainable energy generation.This approach provides an efficient,green,and additive-free strategy for biomass derivative valorization,in which product selectivity could be easily regulated by the applied potential and electrocatalyst utilized.However,a scale-up application is still far from being completed due to the inability of conversion rates and selectivity to meet the industrialization requirements.A better understanding of the reaction mechanism and the development of highefficiency and high-selectivity electrocatalysts are required to pave the path toward larger industrialization applications.Herein,we summarize the recent research progress in the electrocatalytic oxidation and hydrogenation of platform compounds such as furanic compounds and glycerol.In the literature,these three research areas are integrated to realize the scale-up application of the processes as mentioned above.The investigations of the mechanism are based on in situ techniques,theoretical calculations,and advanced electrocatalyst studies.Finally,the challenges and prospects in this topic are described.We expect that this review will provide the fundamental understanding and design guidelines to achieve efficient and high-selectivity catalysts and further facilitate the scale-up application of the electrocatalytic conversion of biomass derivatives. 展开更多
关键词 ELECTROCATALYST electrochemical hydrogenation electrochemical oxidation furanic compound GLYCEROL
下载PDF
The storage mechanism difference between amorphous and anatase as supercapacitors
16
作者 Wanggang Zhang Yiming Liu +2 位作者 Zhiyuan Song Changwan Zhuang Aili Wei 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期156-164,共9页
Although TiO_(2)nanotubes is a promising electrode as supercapacitors due to its high energy density,easy synthesis and chemical stability,there are draw backs such as low conductivity and capacitance.Many studies con... Although TiO_(2)nanotubes is a promising electrode as supercapacitors due to its high energy density,easy synthesis and chemical stability,there are draw backs such as low conductivity and capacitance.Many studies concentrated on improving its electrochemical performance itself but little attention was payed to the reason of capacitance differences caused by its different crystal structures.Herein,we prepare amorphous and anatase TiO_(2)nanotubes and hydrogenated them by a simple electrochemical hydrogenation method to improve their conductivity and capacitance.And then study and compare their morphology and structure differences by SEM,TEM,XRD and BET.The results show that the pore size distribution,internal structure order and internal carrier concentration are the main reasons for their electrochemical performance differences.The microporous structure less than 2 nm in amorphous nanotubes act as a trap of electrolyte ions at current density larger than 0.1μA cm^(-2),leading to small charge and discharge capacitance.The long-range ordered crystal structure of anatase is more favorable for the orderly diffusion of carriers,reducing the inelastic scattering of carrier diffusion process and the electron hole-complexing probability,making anatase nanotubes exhibit higher coulomb efficiency and cycle stability than that of amorphous ones. 展开更多
关键词 electrochemical hydrogenation TiO_(2)nanotube arrays AMORPHOUS ANATASE Super capacitor
下载PDF
Electrochemical transformation of biomass-derived oxygenates
17
作者 Peng Zhou Jie Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第4期1011-1031,共21页
Replacing conventional fossil resources with renewable raw materials for chemical production and energy generation is crucial for achieving the carbon-neutral goal and alleviating the emerging energy crisis.Biomass ha... Replacing conventional fossil resources with renewable raw materials for chemical production and energy generation is crucial for achieving the carbon-neutral goal and alleviating the emerging energy crisis.Biomass has been considered as one of the most promising candidates for this purpose owing to its great natural abundance and inherent ability to fix CO_(2) in the form of multicarbon compounds.Particularly,biomass conversion through an electrochemical route is intriguing because of its operability near ambient conditions,flexible scalability(suitable for distributed manufacturing and even domestic use)and green generation of oxidative or reductive equivalents instead of wasteful and possibly explosive or flammable reagents.Herein,recent progress in electrochemical transformation of biomass,including hydrogenation and amination,is reviewed with the emphasis on catalysts and strategies for enhancing catalytic efficiency.The advances in mechanistic understanding using in-situ spectroscopy are also briefly discussed.Finally,recommendations for the directions for future development are also provided. 展开更多
关键词 biomass utilization electrochemical hydrogenation reductive amination catalyst in-situ spectroscopy mechanism
原文传递
Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst 被引量:6
18
作者 Frédéric Hasché Mehtap Oezaslan +1 位作者 Peter Strasser Tim-Patrick Fellinger 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期249-255,共7页
Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and... Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential. 展开更多
关键词 electrochemical hydrogen peroxide FORMATION SELECTIVITY Mesoporous nitrogen-doped carbon Green synthesis ELECTROCATALYSIS Metal-free catalysis
下载PDF
Effect of Nitrogen and Sulfur Co‑Doped Graphene on the Electrochemical Hydrogen Storage Performance of Co_(0.9)Cu_(0.1)Si Alloy
19
作者 Wenhao Fan Jianxun Zhao +10 位作者 Dayong Liu Qingcheng Liang Wanqiang Liu Qingshuang Wang Heng Liu Peng Chen Shang Gao Xinlong Bao Yong Cheng Xinwei Wang Xin Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第6期1023-1037,共15页
Co_(0.9)Cu_(0.1)Si alloy was prepared by mechanical alloying method.Nitrogen-doped graphene(NG)and nitrogen–sulfur codoped graphene(NSG)were prepared by hydrothermal method.5 wt%graphene oxide,NG and NSG were doped i... Co_(0.9)Cu_(0.1)Si alloy was prepared by mechanical alloying method.Nitrogen-doped graphene(NG)and nitrogen–sulfur codoped graphene(NSG)were prepared by hydrothermal method.5 wt%graphene oxide,NG and NSG were doped into Co_(0.9)Cu_(0.1)Si alloy,respectively,by ball milling to improve the electrochemical hydrogen storage performance of the composite material.X-ray diffraction and scanning electron microscopy were used to characterize the structure and morphology of the composite material,and the LAND battery test system and three-electrode battery system were used to test the electrochemical performance of the composite material.The composite material showed better discharge capacity and better cycle stability than the pristine alloy.In addition,in order to study the optimal ratio of NSG,3%,5%,7%and 10%of NSG were doped into Co_(0.9)Cu_(0.1)Si alloy,respectively.Co_(0.9)Cu_(0.1)Si alloy doped with 5%NSG had the best performance among all the samples.The best discharge capacity was 580.1 mAh/g,and its highest capacity retention rate was 64.1%.The improvement in electrochemical hydrogen storage performance can be attributed to two aspects.On the one hand,the electrocatalytic performance of graphene is improved by co-doping nitrogen and sulfur,on the other hand,graphene has excellent electrical conductivity. 展开更多
关键词 Co_(0.9)Cu_(0.1)Si alloy Nitrogen-sulfur co-doped graphene(NSG) Composite material electrochemical hydrogen storage
原文传递
Gaseous sorption and electrochemical properties of rare-earth hydrogen storage alloys and their representative applications: A review of recent progress 被引量:5
20
作者 LIANG Fei LIN Jing +3 位作者 CHENG Yong YIN DongMin WU YaoMing WANG LiMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第9期1309-1318,共10页
The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been... The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed. 展开更多
关键词 rare-earth hydrogen storage alloys electrochemical hydrogenation hydrogen gas sorption nickel metal hydride battery hydrogen storage tanks
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部