期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Electroless Co-Zn Surface-Modified Nickel Hydroxide as an Active Material for Pasted Nickel Electrodes
1
作者 宋全生 唐致远 +1 位作者 郭鹤桐 CHAN S LI 《Transactions of Tianjin University》 EI CAS 2004年第1期47-53,共7页
Chemically precipitated β type nickel hydroxide powder was surface modified by electroless deposition of Co Zn coatings,and physical properties of both the modified and unmodified nickel hydroxide were characterized ... Chemically precipitated β type nickel hydroxide powder was surface modified by electroless deposition of Co Zn coatings,and physical properties of both the modified and unmodified nickel hydroxide were characterized by scanning electron microscopy (SEM), specific surface area (BET), X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). It has been found that Co and Zn components of the surface electroless coatings exist in the oxidized state. Electrochemical performances of pasted nickel electrodes using the modified nickel hydroxide as an active material were investigated, and compared with those of the electrodes prepared with the unmodified nickel hydroxide. Charge/discharge tests show that the modified nickel hydroxide electrodes exhibit better performances in the charge efficiency, specific discharge capacity and active material utilization. Their resistance to swelling with cycling is also superior to that of the unmodified nickel hydroxide electrodes. Cyclic voltammetric (CV) studies indicate that the modified electrodes have a higher electrochemical activity, and the porous pasted nickel electrodes have some distinguished CV characteristics in comparison with those of the thin film nickel electrodes. 展开更多
关键词 nickel hydroxide surface modification electroless deposition of Co Zn pasted nickel electrodes electrochemical performances
下载PDF
Structures and electrochemical hydrogen storage performance of Si added A_2B_7-type alloy electrodes 被引量:6
2
作者 张羊换 任慧平 +3 位作者 蔡颖 杨泰 张国芳 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期406-414,共9页
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep... In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content. 展开更多
关键词 A2B7-type electrode alloy Si additive structure electrochemical characteristics
下载PDF
Structure and electrochemical hydrogen storage characteristics of La_(0.8-x)Pr_xMg_(0.2)Ni_(3.15)Co_(0.2)Al_(0.1)Si_(0.05) (x=0-0.4) electrode alloys 被引量:3
3
作者 张羊换 侯忠辉 +3 位作者 杨泰 张国芳 李霞 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2013年第5期1142-1150,共9页
For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1... For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance. 展开更多
关键词 A2B7-type electrode alloy LA PR structure electrochemical performances
下载PDF
Influence of TiO_2 on the electrochemical performance of pasted typeβ-nickel hydroxide electrode in alkaline electrolyte 被引量:3
4
作者 B.Shruthi B.J.Madhu V.Bheema Raju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期41-48,共8页
Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was... Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was prepared from nickel sulphate solution using potassium hydroxide as a precipitating agent. Pure β-phase of nickel hydroxide was confirmed from XRD and FT-IR studies. The effects of TiO2 additive on the β-Ni(OH)2 electrode performance are examined. The structure and property of the TiO2 added β-Ni(OH)2 were characterized by XRD, TG-DTA and SEM analysis. A pasted–type electrode is prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry and electrochemical impedance spectroscopy studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 and TiO2 added β-Ni(OH)2 electrodes in 6 M KOH electrolyte. Anodic(Epa) and cathodic(Epc)peak potentials are found to decrease after the addition of TiO 2 into β-Ni(OH)2 electrode material. Further,addition of TiO2 is found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. Compared with pure β-Ni(OH)2 lectrode,TiO2 added β-Ni(OH)2 electrode is found to exhibit higher proton diffusion coefficient(D) and lower charge transfer resistance. These findings suggest that the TiO2 added β-Ni(OH)2 electrode possess improved electrochemical properties and thus can be recognized as a promising candidate for the battery electrode applications. 展开更多
关键词 nickel hydroxide electrode material Thermogravimetric analysis electrochemical properties Impedance spectroscopy
下载PDF
Effects of rapid quenching on structure and electrochemical characteristics of La_(0.5)Ce_(0.2)Mg_(0.3)Co_(0.4)Ni_(2.6-x)Mn_x(x=0-0.4) electrode alloys 被引量:3
5
作者 张羊换 赵栋梁 +3 位作者 董小平 祁焱 郭世海 王新林 《中国有色金属学会会刊:英文版》 CSCD 2009年第2期364-371,共8页
The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electroc... The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electrochemical characteristics of the alloys were studied. The results obtained by XRD,SEM and TEM indicate that the as-cast and quenched alloys mainly consist of two major phases,(La,Mg)Ni3 and LaNi5,as well as a residual phase LaNi. The rapid quenching does not exert an obvious influence on the phase composition of the alloys,but it leads to an increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase. The as-quenched alloys have a nano-crystalline structure,and the grain sizes of the alloys are in the range of 20-30 nm. The results by the electrochemical measurements indicate that both the discharge capacity and the high rate discharge(HRD) ability of the alloy first increase and then decrease with the variety of quenching rate and obtain the maximum values at the special quenching rate which is changeable with the variety of Mn content. The rapid quenching significantly improves the cycle stabilities of the alloys,but it slightly impairs the activation capabilities of the alloys. 展开更多
关键词 纳米晶结构 电极合金 电化学特性 快淬合金 LANI5 人力资源开发 快速冷却 香格里拉
下载PDF
Electrochemical performances of Mg_(45)M_5Co_(50)(M=Pd, Zr) ternary hydrogen storage electrodes
6
作者 詹乐宇 张耀 +7 位作者 朱云峰 庄向阳 万能 曲翊 郭新立 陈坚 王增梅 李李泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1388-1395,共8页
In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess... In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess body-centered cubic (BCC) phase in nano-crystalline. Electrochemical experiments show that Mg45Zr5Co50 electrode exhibits the highest capacity (425 mA·h/g) among the Mg45M5Co50 (M=Mg, Pd, Zr) alloys. And Mg45Pd5Co50 electrode lifts not only the initial discharge capacity (379 mA·h/g), but also the discharge kinetics, e.g., exchange current density and hydrogen diffusion ability from that of Mg50Co50. It could be concluded that the electrochemical performances were enhanced by substituting Zr and Pd for Mg in Mg-Co-based alloy. 展开更多
关键词 Mg-based electrode alloy hydrogen storage mechanical alloying body-centered cubic structure electrochemical performance elemental substitution
下载PDF
Electrochemical Hydrogen Storage Performances of the Si Added La-Mg-Ni-based A_2B_7-type Electrode Alloys for Ni/MH Battery Application 被引量:3
7
作者 张羊换 YANG Tai +3 位作者 CHEN Licui XU Chao REN Huiping ZHAO Dongliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期166-174,共9页
The casting and annealing technologies were applied to fabricate the La0.8Mg0.2Ni3.3Co0.2Six (x = 0-0.2) electrode alloys. The effects of Si content and annealing temperature on the structure and electrochemical per... The casting and annealing technologies were applied to fabricate the La0.8Mg0.2Ni3.3Co0.2Six (x = 0-0.2) electrode alloys. The effects of Si content and annealing temperature on the structure and electrochemical performances of the alloys were investigated systematically. The analyses of XRD and SEM show that all the alloys possess a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi3. The addition of Si brings on an evident increase in the LaNi5 phase and a decrease in the (La, Mg)2Ni7 phase, without altering the main phase component of the alloy, which also makes the lattice constants and cell volumes of the alloy enlarged. Likewise, the annealing treatment engenders the same action on the lattice constants and cell volumes as adding Si. Simultaneously, it gives rise to the variation of the phase abundance and the coarsening of the alloy grains. The electrochemical measurements indicate that the addition of Si ameliorates the cycle stability of the as-cast and annealed alloys significantly, but impairs their discharge capacities clearly. Similarly, the annealing treatment makes a positive contribution to the cycle stability of the alloy evidently, and the discharge capacity of the alloy shows a maximum value with annealing temperature rising. Furthermore, the high rate discharge ability (HR) first augments and then declines with the rising of Si content and annealing temperature. 展开更多
关键词 A2B7-type electrode alloy Si addition annealing temperature structure electrochemical performances
下载PDF
An investigation on electrochemical performances of as-cast and annealed La_(0.8)Mg_(0.2)Ni_(3.3)Co_(0.2)Si_x(x=0-0.2)alloy electrodes for Ni/MH battery application 被引量:5
8
作者 张羊换 陈莉翠 +3 位作者 赵宸 杨泰 徐超 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2014年第6期2125-2135,共11页
The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and elect... The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising. 展开更多
关键词 A2B7-type electrode alloy adding Si annealing treatment structure electrochemical performances
下载PDF
EFFECT OF ELECTROLESS PLATING COBALT UPON CHARACTERISTICS OF NICKEL HYDROXIDE ELECTRODEFORRECHARGEABLEALKALINEBATTERIES
9
作者 Wang, XY Zhang, YS +2 位作者 Yan, J Yuan, HT Song, DY 《中国有色金属学会会刊:英文版》 CSCD 1998年第4期135-141,共7页
INTRODUCTIONNickelhydroxideelectrodeshavebeenwidelyusedaspositiveelectrodeinNiCd,NiH2andNiMHsecondarybat... INTRODUCTIONNickelhydroxideelectrodeshavebeenwidelyusedaspositiveelectrodeinNiCd,NiH2andNiMHsecondarybateries.Improvement... 展开更多
关键词 nickel HYDROXIDE electrode ELECTROLESS PLATING COBALT electrode performance electrochemical impedance conductivity
下载PDF
Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages 被引量:14
10
作者 Kai-lin Cheng Dao-bin Mu +3 位作者 Bo-rong Wu Lei Wang Ying Jiang Rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期342-351,共10页
A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure,... A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge–discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2material obtained by calcination at 900°C displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh•g−1at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh•g−1at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh•g−1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 CALCINATION Cathodes Cobalt Crystal structure Cyclic voltammetry Electric batteries Electric discharges electrochemical properties electrodes Ions Lithium Lithium alloys Lithium compounds Manganese nickel Particle size Particle size analysis Scanning electron microscopy Secondary batteries X ray diffraction
下载PDF
Characterization methods of organic electrode materials 被引量:4
11
作者 Meng Zhang Wenjun Zhou Weiwei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期291-303,I0008,共14页
The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to charact... The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to characterize the electrode materials to study their structures,redox mechanisms and electrochemical performances.In this review,the common characterization methods that have been adopted so far are summarized from two aspects:experimental characterization and theoretical calculation.The experimental characterization is introduced in detail from structural characterization,electrochemical characterization and electrode reaction chara cterization.The experimental purposes and working principles of various experimental characterization methods are briefly illustrated.As the auxilia ry means,theoretical calculation provides the theoretical basis for characterizing the electrochemical reaction mechanism of organic electrode materials.Through these characterizations,we will have a deep understanding about the material structures,electrochemical redox mechanisms,electrochemical properties and the relationships of structure-property.It is hoped that this review would help researchers to select the suitable characterization methods to analyze the structures and performances of organic electrode materials quickly and effectively. 展开更多
关键词 Organic electrode materials Structural characterization electrochemical characterization electrode reaction characterization Theoretical calculation
下载PDF
Nanosized Nickel Oxides Derived from the Citrate Gel Process and Performances for Electrochemical Capacitors 被引量:1
12
作者 沈湘黔 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期179-182,共4页
Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ... Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ratios of citric acid (CA) to nickel at different temperatures and times were characterized by thermal analysis (TG/DTA), scanning electron microscopy (SEM), x-ray diffraction (XRD), and measurement of specific surface area (BET) with porosity analyses. The optimized processing conditions of calcination temperature 400℃ for 1 hour with the CA/Ni ratio of 1.2, were determined to produce the nanosized nickel oxide pow- ders with a high specific surface area of 181 m^2/g, nanometer particle sizes of 15-25 nm, micro-pore diameter distribution between 4-10 nm. The capacitance characteristics of the nanosized nickel oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) exhibiting both a double-layer capacitance and a faradaic pseudocapacitance. The nanosized nickel oxide electrode shows a high cyclic stability and is promising for high performance electrochemical capacitors. 展开更多
关键词 citrate gel process nanosized nickel oxide electrode electrochemical capacitors capaci- tance characteristics
下载PDF
Microstructure and Electrochemical Characteristics of Melt-Spinning Alloy Ml(NiCoMnAl)_5
13
作者 WEN Ming fen 1,2 , CHEN Lian 1, TONG Min 1, CHEN De min 1, ZHAI Yu chun 2 ( 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 2. Department of Materials and Metallurgy, Northeastern University, Shenyang 11000 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期80-80,共1页
The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies sh... The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate. 展开更多
关键词 rare earths melt spinning method hydrogen storage alloy electrode electrochemical characteristics columnar structure
下载PDF
Simulation and Experimental Study on Improving Electrochemical Machining Stability of Highly Convex Structures on Casing Surfaces Using Backwater Pressure
14
作者 Zhenghui Ge Wangwang Chen Yongwei Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期152-158,共7页
Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blo... Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blocky electrodes for electrochemical machining(ECM)of casing parts is a commonly adopted method,especially when highly convex structures.However,with an increase in the convex structure height,the fow felds of the machining areas become more complex,and short circuits may occur at any time.In this study,a method to improve the fow feld characteristics within a machining area by adjusting the backwater pressure is proposed and validated through simulation and experiment analyses.The simulation results demonstrated that the back-pressure method can signifcantly improve the uniformity of the fow feld around the convex structure compared with the extraction and open outlet modes.Subsequently,the back-pressure value was optimized at 0.5 MPa according to the simulation results.The experimental results showed that using the optimized back-pressure parameters,the cathode feed-rate increased from 0.6 to 0.7 mm/min,and a 16.1 mm tall convex structure was successfully machined.This indicates that the back-pressure method is suitable and efective for electrochemical machining of highly convex structures with blocky electrodes.In this study,we propose a method to improve the electrochemical machining stability of a convex structure on a casing surface using backwater pressure,which has achieved remarkable results. 展开更多
关键词 Casing parts electrochemical machining Convex structures Back-pressure method Blocky electrode
下载PDF
Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries 被引量:1
15
作者 YANG Shuqin LI Yuan +3 位作者 YUAN Yongjie DONG Zhentao REN Kailiang ZHAO Yumeng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第4期604-608,共5页
We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show tha... We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30--40 nm) at annealing temperatures of 500 and 600 ℃. However, as the annealing temperature was increased to 700 and 800 ℃, the crystals began to combine with each other and grew into further larger crystals(90--100 nm). The electrochemical performance of the annealed oxides was measured at 60 ℃ using chronopotentiometry, potentiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600 ℃, with a maximum discharge capacity of 563 mA-h/g. The better electrochemical performance of LaFeO3 annealed at 600℃ could be ascribed to their smaller and more homogeneous crysals. 展开更多
关键词 Metal hydride/nickel(MH/Ni) battery Negative electrode material Perovskite LaFeO3 MICROstructure electrochemical property
原文传递
煤基硬炭在钠离子电池负极材料中的应用研究进展
16
作者 吴秋萍 满梦瑶 +6 位作者 宋帅超 丛锦 程俊霞 赖仕全 朱亚明 赵雪飞 刘海丰 《化工矿物与加工》 CAS 2024年第6期29-36,共8页
煤炭是全球储量最丰富、分布最广泛且使用最经济的能源之一。在可预见的未来,煤炭仍将是世界主要能源。在“双碳”背景下,探索煤炭资源的高效清洁利用是一项重要而紧迫的工作。本文简述了硬炭在钠离子电池中的存储机理,分析了以4种不同... 煤炭是全球储量最丰富、分布最广泛且使用最经济的能源之一。在可预见的未来,煤炭仍将是世界主要能源。在“双碳”背景下,探索煤炭资源的高效清洁利用是一项重要而紧迫的工作。本文简述了硬炭在钠离子电池中的存储机理,分析了以4种不同变质程度的煤作为前驱体调控硬炭结构的方式和电化学性能的差异,总结了煤基硬炭材料在钠离子电池应用中存在的共性问题,指出了目前煤基硬炭的研究重点和改进方向。研究成果可为煤基硬炭原料选择、结构调控、缺陷设计等提供参考。 展开更多
关键词 煤基硬炭 负极材料 钠离子电池 存储机理 结构调控 电化学性能
下载PDF
多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐
17
作者 王正峰 谢雨杭 +3 位作者 李伟科 范永春 康钟尹 付乾 《化工进展》 EI CAS CSCD 北大核心 2024年第9期4892-4899,共8页
电解碳酸氢盐体系可避免CO_(2)解吸过程中的能量密集型步骤,更具经济性及技术可行性。但目前阴极存在原位产生CO_(2)快速逃逸现象,CO_(2)不能充分参与反应并导致CO_(2)利用率低等问题,本文将活性炭(activated carbon,AC)作为吸附层修饰... 电解碳酸氢盐体系可避免CO_(2)解吸过程中的能量密集型步骤,更具经济性及技术可行性。但目前阴极存在原位产生CO_(2)快速逃逸现象,CO_(2)不能充分参与反应并导致CO_(2)利用率低等问题,本文将活性炭(activated carbon,AC)作为吸附层修饰电极,与CO_(2)催化材料Ag均匀混合以构建吸附催化一体化电极,有效调控气体扩散电极孔隙结构,同时探究了不同炭材料的CO_(2)吸附特性对电解碳酸氢盐性能的影响。在Ag∶AC=4∶1、Ag纳米颗粒载量为2mg/cm^(2)、全氟磺酸-聚四氟乙烯共聚物(Nafion)质量分数为3.04%时,AC修饰Ag电极具有最高的CO法拉第效率,在100m A/cm^(2)和200m A/cm^(2)电流密度时分别达到59.02%和53.79%。稳定性测试表明该电极能够保持11h的高效运行,CO_(2)利用率达68.61%。证明了AC修饰的催化吸附一体化电极在电解碳酸氢盐体系中可有效吸附CO_(2),提高电化学性能。 展开更多
关键词 电化学还原CO_(2) 原位还原CO_(2) 电解碳酸氢盐 电极结构 一体化电极
下载PDF
自支撑Bi@Cu纳米树电极高效电化学还原CO_(2)制甲酸
18
作者 施桐 甘乔炜 +3 位作者 刘东 张莹 冯浩 李强 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第7期810-818,I0003,I0004,共11页
利用电化学方法将CO_(2)转化为高值化学品是实现碳中和目标的一条有效途径。制备高性能电极是实现CO_(2)高效转化的关键一环。常规喷涂法所制电极中催化层与集流体间的不良接触会严重影响电催化活性以及稳定性。为此,本研究结合电化学... 利用电化学方法将CO_(2)转化为高值化学品是实现碳中和目标的一条有效途径。制备高性能电极是实现CO_(2)高效转化的关键一环。常规喷涂法所制电极中催化层与集流体间的不良接触会严重影响电催化活性以及稳定性。为此,本研究结合电化学沉积和离子置换反应法,构建了一种原位生长的Bi@Cu纳米树(Bi@Cu NTs)自支撑电极。自支撑纳米树结构在降低界面电阻、确保空间结构稳定的同时,为反应提供了丰富的活性位点和发达的孔隙结构,进而实现CO_(2)分子、电解液离子以及电子的协同传输,并进一步促进电化学CO_(2)转化。实验结果表明,Bi@Cu NTs电极在电化学活性和长期运行稳定性方面表现出色。在–1.4~–0.8 V(vs.RHE)的宽工作电位窗口范围内,甲酸选择性均超过90%;在–1.2 V的工作电位下,该电极同时实现了高达97.9%的甲酸选择性和170.6 mA·cm^(–2)的电流密度。此外,该电极在–1.0 V下经过50 h持续电解,获得了超过90%的平均甲酸选择性及大于110 mA·cm^(–2)的平均电流密度,且性能未见明显衰减,稳定性优异。 展开更多
关键词 电化学还原CO_(2) 甲酸 自支撑电极 纳米树结构 Bi纳米片
下载PDF
二次电池高熵电极材料研究进展 被引量:1
19
作者 林炜琦 季钰榕 +3 位作者 管联玉 陈宇鸿 邱麟媛 丁翔 《电源技术》 CAS 北大核心 2024年第8期1503-1520,共18页
对于二次电池电极材料而言,高熵设计可以获得更好的结构稳定性、体相电子电导率以及离子扩散速率。综述了近年来锂离子电池(LIBs)、钠离子电池(SIBs)、钾离子电池(PIBs)和水系锌离子电池(ZIBs)中的高熵改性电极材料,深刻剖析了优越的电... 对于二次电池电极材料而言,高熵设计可以获得更好的结构稳定性、体相电子电导率以及离子扩散速率。综述了近年来锂离子电池(LIBs)、钠离子电池(SIBs)、钾离子电池(PIBs)和水系锌离子电池(ZIBs)中的高熵改性电极材料,深刻剖析了优越的电化学性能与高熵结构之间的构效关系,系统总结了高熵电极材料的发展现状与挑战,并对高熵材料的优化设计提出了见解,为推动二次电池高熵电极材料的产业化提供参考。 展开更多
关键词 二次电池 电极材料 高熵设计 结构稳定性 电化学性能
下载PDF
锂/钠-氯二次电池的最新进展——从材料构建到性能评估
20
作者 杨建航 冯文婷 +5 位作者 韩俊伟 魏欣茹 马晨宇 毛常明 智林杰 孔德斌 《储能科学与技术》 CAS CSCD 北大核心 2024年第6期1824-1834,共11页
传统锂离子电池的能量密度已难以满足日益增长的更高能量密度的需求。开发新型高能量密度二次电池是最为有效的一个策略。近期,基于商用一次锂-亚硫酰氯锂电池衍生而来的锂/钠-氯二次电池因其高能量密度而备受关注,成为替代传统锂离子... 传统锂离子电池的能量密度已难以满足日益增长的更高能量密度的需求。开发新型高能量密度二次电池是最为有效的一个策略。近期,基于商用一次锂-亚硫酰氯锂电池衍生而来的锂/钠-氯二次电池因其高能量密度而备受关注,成为替代传统锂离子电池的有力竞争者。本文围绕锂/钠-氯二次电池的最新研究进展,综述了正极载体、负极及电解液等关键组分构建研究及其对电化学性能的影响。在正极载体方面,系统阐述了碳材料、共轭框架聚合物等载体设计对锂/钠-氯二次电池首次放电容量、可逆容量、倍率性能和温度的影响;在电解液方面,详细分析了针对反应机理、中间相产物和电解液腐蚀问题的解决策略;并简要介绍了适用于锂/钠-氯二次电池的新型合金负极。基于正极载体的理性设计与电解液系统优化,锂/钠-氯二次电池在新型二次电池领域已初现峥嵘,循环寿命可达500圈,尤其是在极端服役环境中表现优异(可在-80℃工作,电流密度最大可达16 A/g)。然而,氯物种转化动力学速率慢、活性氯物种利用率低以及氯物种对负极等的腐蚀难题仍然是限制其性能进一步提升的瓶颈,也是未来亟待解决的挑战所在。 展开更多
关键词 锂/钠-氯二次电池 高能量密度 电极材料设计 结构性能关系 电化学反应动力学
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部