期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bi-Atom Electrocatalyst for Electrochemical Nitrogen Reduction Reactions 被引量:2
1
作者 Wenchao Zhang Bin-Wei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期86-90,共5页
The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemica... The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemical NRR presents several practical challenges,including sluggish reaction and low selectivity.Here,bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers.It could accelerate the kinetics of N_(2)-to-NH_(3) electrochemical conversion and possess better electrochemical NRR selectivity.This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR. 展开更多
关键词 electrochemical nitrogen reduction reaction Bi-atom catalysts Excellent activity High selectivity
下载PDF
Enhancing ammonia production rates from electrochemical nitrogen reduction by engineering three-phase boundary with phosphorus-activated Cu catalysts
2
作者 Jeehye Kim Cho Hee Lee +5 位作者 Yong Hyun Moon Min Hee Lee Eun Hyup Kim Sun Hee Choi Youn Jeong Jang Jae Sung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期394-401,共8页
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i... Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems. 展开更多
关键词 electrochemical nitrogen reduction reaction Ammonia production Phosphorous modified copper electrodes Gas diffusion electrodes Three-phase boundary PTFE coating
下载PDF
Tuning Double Layer Structure of WO3 Nanobelt for Promoting the Electrochemical Nitrogen Reduction Reaction in Water 被引量:1
3
作者 洪清水 李唐懿 +9 位作者 郑世胜 陈海标 楚鸿豪 许宽达 李舜宁 梅宗维 赵庆贺 任文举 赵文光 潘锋 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2021年第4期519-526,408,共9页
Electrochemical fixation of nitrogen to ammonia with highly active,highly selective and low cost electrocatalysts is a sustainable alternative to the extremely energy-and capital-intensive Haber-Bosch process.Herein,w... Electrochemical fixation of nitrogen to ammonia with highly active,highly selective and low cost electrocatalysts is a sustainable alternative to the extremely energy-and capital-intensive Haber-Bosch process.Herein,we demonstrate a near electroneutral WO3 nanobelt catalyst to be a promising electrocatalyst for selective and efficient nitrogen reduction.The concept of near electroneutral interface is demonstrated by fabricating WO3 nanobelts with small zeta potential value on carbon fiber paper,which ensures a loose double layer structure of the electrode/electrolyte interface and allows nitrogen molecules access the active sites more easily and regulates proton transfer to increase the catalytic selectivity.The WO3/CFP electrode with optimal surface charge achieves a NH3 yield rate of 4.3μg·h-1·mg-1 and a faradaic efficiency of 37.3%at-0.3 V vs.RHE,rivalling the performance of the state-of-the-art nitrogen reduction reaction electrocatalysts.The result reveals that an unobstructed gas-diffusion pathway for continually supplying enough nitrogen to the active catalytic sites is of great importance to the overall catalytic performance. 展开更多
关键词 electrochemical nitrogen reduction reaction zeta potential nitrogen diffusion and transport process WO3 nanobelts first-principles calculations
原文传递
CeO_(x)-supported monodispersed MoO_(3) clusters for high-efficiency electrochemical nitrogen reduction under ambient condition 被引量:1
4
作者 Jie Liu Guanghua Wang +4 位作者 Shiyuan Zhou Sangui Liu Gen Li Hong-Gang Liao Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期186-192,共7页
Developing efficient and low-cost electrocatalysts is essential for the electroreduction of N_(2) to NH_(3).Here,highly monodispersed MoO_(3) clusters loaded on a coral-like CeO_(x)compound with abundant oxygen vacanc... Developing efficient and low-cost electrocatalysts is essential for the electroreduction of N_(2) to NH_(3).Here,highly monodispersed MoO_(3) clusters loaded on a coral-like CeO_(x)compound with abundant oxygen vacancies are successfully prepared by an impregnation-reduction method.The MoO_(3) clusters with small sizes of 2.6±0.5 nm are induced and anchored by the oxygen vacancies of CeO_(x),resulting in excellent nitrogen reduction reaction(NRR)performance.Additionally,the synergistic effects between MoO_(3) and CeO_(x)lead to a further improvement of the electrochemical performance.The as-prepared MoO_(3)-CeO_(x)catalyst shows an NH_(3) yield rate of 32.2 μg h^(-1) mg^(-1) cat and a faradaic efficiency of 7.04%at-0.75 V(vs.reversible hydrogen electrode)in 0.01 M Dulbecco’s Phosphate Buffered Saline.Moreover,it displays decent electrochemical stability over 30,000 s.Besides,the electrochemical NRR mechanism for MoO_(3)-CeO_(x)is investigated by in-situ Fourier transform infrared spectroscopy.N-H stretching,H-N-H bending,and N-N stretching are detected during the reaction,suggesting that an associative pathway is followed.This work provides an approach to designing and synthesizing potential electrocatalysts for NRR. 展开更多
关键词 electrochemical nitrogen reduction reaction Mo-based catalysts Monodispersed clusters Oxygen vacancies
下载PDF
Unveiling the Underlying Mechanism of Transition Metal Atoms Anchored Square Tetracyanoquinodimethane Monolayers as Electrocatalysts for N_(2) Fixation
5
作者 Shengyao Lv Chunxiang Huang +1 位作者 Guoliang Li Liming Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期533-542,共10页
We for the first time systematically studied the structures and electrochemical nitrogen reduction reaction properties of two-dimensional single transition-metal anchored square tetracyanoquinodimethane monolayers(lab... We for the first time systematically studied the structures and electrochemical nitrogen reduction reaction properties of two-dimensional single transition-metal anchored square tetracyanoquinodimethane monolayers(labeled as:TM-sTCNQ,TM=3d,4d,5d series transition metals)by employing density functional theory method.Through highthroughput screenings and full reaction path researches,two promising electrochemical nitrogen reduction reaction catalysts Nb-sTCNQ and MosTCNQ have been obtained.The nitrogen reduction reaction onset potential on Nb-sTCNQ is as low as−0.48 V.Furthermore,the Nb-sTCNQ catalyst can quickly desorb NH3 produced with a free energy of 0.65 eV,giving Nb-sTCNQ excellent catalytic cycle performance.The high catalytic activity of the two materials might be attributed to the effective charge transfer between the active center and adsorbed N_(2),which enables the active center to adsorb and activate inert N_(2) molecules well,and the reduction processes require small energy input(i.e.,the maximum free energy changes are small).This work provides insights for finding highly efficient,stable,and low-cost nitrogen reduction reaction electrocatalysts.We hope our results can promote further experimental and theoretical research of this field. 展开更多
关键词 2D TM-sTCNQ monolayers density functional theory method electrochemical nitrogen reduction reaction high-throughput screening single-atom catalysts
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部