Layered double hydroxides(LDHs), as a class of typical two-dimensional materials, have sparked increasing interest in the field of energy storage and conversion. In the last few years, the research about LDHs as elect...Layered double hydroxides(LDHs), as a class of typical two-dimensional materials, have sparked increasing interest in the field of energy storage and conversion. In the last few years, the research about LDHs as electrode active materials has seen much progress in terms of structure designing, material synthesis, properties tailoring, and applications. In this review, we focus on the integrated nanostructural electrodes(INEs) construction using LDH materials, including pristine LDH-INEs, hybrid LDH-INEs, and LDH derivativeINEs, as well as the performance advantages and applications of LDH-INEs.Moreover, in the final section, the insights about challenges and prospective in this promising research field were concluded, especially in regulation of intrinsic activity and uncovering of structure–activity relationship, which would push forward the development of this fast-growing field.展开更多
基金supported by the National Natural Science Foundation of China(21601011 and 21521005)the National Key Research and Development Programme(2017YFA0206804)+1 种基金the Fundamental Research Funds for the Central Universities(buctrc201506 and buctylkxj01)the Higher Education and HighQuality and World-Class Universities(PY201610)
文摘Layered double hydroxides(LDHs), as a class of typical two-dimensional materials, have sparked increasing interest in the field of energy storage and conversion. In the last few years, the research about LDHs as electrode active materials has seen much progress in terms of structure designing, material synthesis, properties tailoring, and applications. In this review, we focus on the integrated nanostructural electrodes(INEs) construction using LDH materials, including pristine LDH-INEs, hybrid LDH-INEs, and LDH derivativeINEs, as well as the performance advantages and applications of LDH-INEs.Moreover, in the final section, the insights about challenges and prospective in this promising research field were concluded, especially in regulation of intrinsic activity and uncovering of structure–activity relationship, which would push forward the development of this fast-growing field.