The electrosynthesis of hydrogen peroxide(H2O2)from oxygen reduction reaction(ORR)via a two-electron pathway provides an appealing alternative to the energy-intensive anthraquinone route;however,the development of ORR...The electrosynthesis of hydrogen peroxide(H2O2)from oxygen reduction reaction(ORR)via a two-electron pathway provides an appealing alternative to the energy-intensive anthraquinone route;however,the development of ORR with high selectivity and durability for H2O2 production is still challenging.Herein,we demonstrate an active and stable catalyst,composing of highly dispersed Ag nanoclusters on N-doped hollow carbon spheres(NC-Ag/NHCS),which can effectively reduce O2 molecules into H2O2 with a selectivity of 89%–91%in a potential range from 0.2 to 0.7 V(vs.reversible hydrogen electrode(RHE))in acidic media.Strikingly,NC-Ag/NHCS achieve a mass activity of 27.1 A·g^(−1) and a yield rate of 408 mmol·gcat.^(−1)·h^(−1) at 0.7 V,both of which are comparable with the best-reported results.Furthermore,NC-Ag/NHCS enable catalyzing H2O2 production with a stable current density over 48-h electrolysis and only about 9.8%loss in selectivity after 10,000 cycles.Theoretical analyses indicate that Ag nanoclusters can contribute more electrons to favor the protonation of adsorbed O2,thus leading to a high H2O2 selectivity.This work confirms the great potential of metal nanocluster-based materials for H2O2 electrosynthesis under ambient conditions.展开更多
基金the National Natural Science Foundation of China(Nos.22075211,21601136,51971157,62005173,and 51621003)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2016),Guangdong Third Generation Semiconductor Engineering Technology Development Center(No.2020GCZX007)+2 种基金Science,Technology,and Innovation Commission of Shenzhen Municipality(No.RCBS20200714114818140)China Postdoctoral Science Foundation(No.2019M663118)School level scientific research project of Shenzhen Institute of information technology(No.PT2019E002).
文摘The electrosynthesis of hydrogen peroxide(H2O2)from oxygen reduction reaction(ORR)via a two-electron pathway provides an appealing alternative to the energy-intensive anthraquinone route;however,the development of ORR with high selectivity and durability for H2O2 production is still challenging.Herein,we demonstrate an active and stable catalyst,composing of highly dispersed Ag nanoclusters on N-doped hollow carbon spheres(NC-Ag/NHCS),which can effectively reduce O2 molecules into H2O2 with a selectivity of 89%–91%in a potential range from 0.2 to 0.7 V(vs.reversible hydrogen electrode(RHE))in acidic media.Strikingly,NC-Ag/NHCS achieve a mass activity of 27.1 A·g^(−1) and a yield rate of 408 mmol·gcat.^(−1)·h^(−1) at 0.7 V,both of which are comparable with the best-reported results.Furthermore,NC-Ag/NHCS enable catalyzing H2O2 production with a stable current density over 48-h electrolysis and only about 9.8%loss in selectivity after 10,000 cycles.Theoretical analyses indicate that Ag nanoclusters can contribute more electrons to favor the protonation of adsorbed O2,thus leading to a high H2O2 selectivity.This work confirms the great potential of metal nanocluster-based materials for H2O2 electrosynthesis under ambient conditions.