期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Cation-Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery
1
作者 Lilin Zhang Yining Chen +5 位作者 Zongyuan Jiang Jingwei Chen Cong Wei Wenzhuo Wu Shaohui Li Qun Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期60-67,共8页
Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the re... Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the realized energy density is constrained by the limited capacity and low voltage.Herein,copper-tetracyanoquinodimethane(CuTCNQ),an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output.Through electrochemical activation,electrolyte optimization,and adoption of graphene-based separator,CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties.The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red(FT-IR)spectra,ex situ X-ray photoelectron spectroscopy(XPS),and in situ ultraviolet visible spectroscopy(UV-vis),revealing reversible redox reactions in both cuprous cations(Cu^(+))and organic anions(TCNQ^(x-1)),thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g^(-1).The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes. 展开更多
关键词 cathode materials cyano groups electrochemical activation organic charge-transfer complex zinc-ion battery
下载PDF
Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes
2
作者 Xia Hou Liping Huang +2 位作者 Peng Zhou Hua Xue Ning Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第4期63-75,共13页
Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been exami... Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been examined, particularly from the perspective of the co-presence of Cd(II) and Cr(VI) in a wastewater. Four known indigenous Cd-tolerant EAB of Ochrobactrum sp X l, Pseudomonas sp X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7 removed more Cd(II) and less Cr(VI) in the simultaneous presence of Cd(II) and Cr(VI), compared to the controls with individual Cd(II) or single Cr(VI). Response of these EAB toward exotic Cr(VI) was related to the associated subcellular metal distribution based on the sensing of fluorescence probes. EAB cell membrane harbored more cadmium than chromium and cytoplasm located more chromium than cadmium, among which the imaging ofintracelluler Cr(III) ions increased over time, contrary to the decreased trend for Cd(II) ions. Compared to the controls with single Cd(II), exotic Cr(VI) decreased the imaging of Cd(II) ions in the EAB at an initial 2 h and negligibly affected therealier. However, Cd(II) diminished the imaging of Cr (III) ions in the EAB over time, compared to the controls with individual Cr(VI). Current accelerated the harboring of cadmium at an initial 2 h and directed the accumulation of chromium in EAB over time. This study provides a viable approach for simultaneously quantitatively imaging Cd(II) and Cr (III) ions in EAB and thus gives valuable insights into the response of indigenous Cd-tolerant EAB toward exotic Cr(VI) in MECs. 展开更多
关键词 Microbial electrolysis cell electrochemically active bacteria Cd-tolerant bacteria Cd(ll) and Cr(V1) Fluorescence probe
原文传递
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:1
3
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
MIL-100(V) derived porous vanadium oxide/carbon microspheres with oxygen defects and intercalated water molecules as high-performance cathode for aqueous zinc ion battery
4
作者 Yuexin Liu Jian Huang +3 位作者 Xiaoyu Li Jiajia Li Jinhu Yang Kefeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期578-589,I0013,共13页
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(... The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation. 展开更多
关键词 Metal-organic frameworks Vanadium oxide Carbon Zn-ion batteries Electrochemical activation
下载PDF
Heterogeneous Cu_(x)O Nano‑Skeletons from Waste Electronics for Enhanced Glucose Detection
5
作者 Yexin Pan Ruohan Yu +8 位作者 Yalong Jiang Haosong Zhong Qiaoyaxiao Yuan Connie Kong Wai Lee Rongliang Yang Siyu Chen Yi Chen Wing Yan Poon Mitch Guijun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期554-568,共15页
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica... Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives. 展开更多
关键词 Copper oxide Electron 3D tomography E-WASTE Glucose detection Electrochemical activation
下载PDF
Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection 被引量:4
6
作者 胥燕燕 高明明 +4 位作者 张国辉 王新华 李佳佳 王曙光 桑元华 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1936-1942,共7页
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det... An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters. 展开更多
关键词 electrochemically reduced graphene oxide Electrochemical detection Tetracycline Electrocatalytic activity Oxygen-containing functional groups
下载PDF
A Comparative Investigation of Single Crystal and Polycrystalline Ni-Rich NCMs as Cathodes for Lithium-Ion Batteries 被引量:3
7
作者 Xianming Deng Rui Zhang +6 位作者 Kai Zhou Ziyao Gao Wei He Lihan Zhang Cuiping Han Feiyu Kang Baohua Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期1-7,共7页
Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs... Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability. 展开更多
关键词 cathodes electrochemically active surface area Li^(+)diffusion coefficient lithium-ion batteries single crystal
下载PDF
Controllably partial removal of thiolate ligands from unsupported Au_(25) nanoclusters by rapid thermal treatments for electrochemical CO_(2)reduction 被引量:2
8
作者 Liting Huang Yongfeng Lun +4 位作者 Yuping Liu Liming Chen Bowen Li Shuqin Song Yi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期16-22,I0002,共8页
Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t... Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters. 展开更多
关键词 Gold nanoclusters THIOLATES Ligand removal electrochemically active surface area Electrochemical CO_(2)reduction
下载PDF
Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries 被引量:3
9
作者 Yuxin Gao Jiang Zhou +6 位作者 Liping Qin Zhenming Xu Zhexuan Liu Liangbing Wang Xinxin Cao Guozhao Fang Shuquan Liang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1429-1436,共8页
Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ ... Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system. 展开更多
关键词 Crystal plane Electrochemical activation Phase transition reaction Cycling stability Zinc-ion batteries
下载PDF
Perspectives in Electrochemical in situ Structural Reconstruction of Cathode Materials for Multivalent-ion Storage 被引量:3
10
作者 Jing Huang Xuefang Xie +2 位作者 Kun Liu Shuquan Liang Guozhao Fang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期72-86,共15页
Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the s... Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section. 展开更多
关键词 cathode materials electrochemical activation in situ reconstruction multivalent-ion batteries
下载PDF
High Fe^(LS)(C)electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage 被引量:1
11
作者 Junhong Guo Fan Feng +7 位作者 Shiqiang Zhao Zhenhai Shi Rui Wang Meng Yang Fangfang Chen Suli Chen Zi-Feng Ma Tianxi Liu 《Carbon Energy》 SCIE CSCD 2023年第5期67-77,共11页
Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF d... Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond. 展开更多
关键词 cathode material electrochemical activity sodium-ion batteries sodium iron hexacyanoferrate structural evolution
下载PDF
A versatile strategy to activate self-sacrificial templated Li_(2)MnO_(3) by defect engineering toward advanced lithium storage
12
作者 Jian-En Zhou Yanhua Peng +7 位作者 Xiaoyan Sang Chunlei Wu Yiqing Liu Zhijian Peng Hong Ou Yongbo Wu Xiaoming Lin Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期164-180,I0007,共18页
Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.T... Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode. 展开更多
关键词 Li_(2)MnO_(3) Metal-organic framework Oxygen vacancy Lithium-ion battery Electrochemical activity
下载PDF
Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process:Optimization,degradation pathways,and toxicology assessment
13
作者 Elif Yakamercan Ahmet Aygün Halis Simsek 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第9期85-98,共14页
Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage syste... Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3). 展开更多
关键词 CIPROFLOXACIN Response surface methodology electrochemically activated persulfate ELECTROOXIDATION
原文传递
High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation 被引量:3
14
作者 高孝麟 王昱飞 +2 位作者 谢和平 刘涛 储伟 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期396-403,共8页
The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro... The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell. 展开更多
关键词 Platinum catalyst Galvanic displacement Nickel supported on carbon Hydrogen oxidation reaction electrochemically active surface
下载PDF
Influence of Ga and In on microstructure and electrochemical properties of Mg anodes 被引量:4
15
作者 冯艳 王日初 彭超群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2650-2656,共7页
The influence of Ga and In on the electrochemical properties of Mg anode materials were investigated by the polarization and galvanostatic curve tests. The microstructure and the corroded surface of the Mg-In-Ga alloy... The influence of Ga and In on the electrochemical properties of Mg anode materials were investigated by the polarization and galvanostatic curve tests. The microstructure and the corroded surface of the Mg-In-Ga alloys were observed by scanning electron microscopy (SEM). The corrosion product of the Mg-0.8%In (mass fraction) and Mg-0.8%Ga-0.3%In alloy were determined by X-ray diffraction. The results show that no second phase exists in the Mg-xIn (x=0-0.8%) allloys. Intergranular compounds containing Ga and In elements occur in the Mg-0.8%In-xGa (x=0-0.8%) alloys. The addition of In into Mg as well as the addition of 0.05%-0.5%Ga into Mg-In alloy promotes the corrosion resistance. The addition of Ga into Mg-In alloys also promotes the electrochemical activity. The Mg-0.8%In-0.8%Ga alloy has the most negative mean potential,-1.682 V, which is more negative than -1.406 V in AZ91D. The corrosion type of the Mg-In-Ga alloys is general corrosion and the corrosion product is Mg(OH)2. 展开更多
关键词 Mg anode alloying element GA In galvanostatic curve corrosion resistance electrochemical activity
下载PDF
Effects of Hg and Ga on microstructures and electrochemical corrosion behaviors of Mg anode alloys 被引量:1
16
作者 张嘉佩 王日初 +1 位作者 冯艳 彭超群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3039-3045,共7页
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea... The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms. 展开更多
关键词 Mg anode alloy microstructure electrochemical activity corrosion resistance electrochemical impedance spectroscopy
下载PDF
Highly reversible lead-carbon battery anode with lead grafting on thecarbon surface 被引量:6
17
作者 Jian Yin Nan Lin +6 位作者 Wenli Zhang Zheqi Lin Ziqing Zhang Yue Wang Jun Shi Jinpeng Bao Haibo Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1674-1683,共10页
A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surf... A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode. 展开更多
关键词 Lead-carbon battery Carbon/lead composite Charge acceptance Hydrogen evolution electrochemically active surface area
下载PDF
Electrodeposition and Characterization of Polyaniline Film 被引量:3
18
作者 WANG Hong-zhi, ZHANG Peng, ZHANG Wei-guo and YAO Su-wei Shanshan Research Office of Surface Technology, College of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第1期133-136,共4页
Abstract Polyaniline film was prepared by electrochemical method in an acidic solution of aniline. The micromor- phology of the polyaniline film was transformed to three-dimensional network structure instead of little... Abstract Polyaniline film was prepared by electrochemical method in an acidic solution of aniline. The micromor- phology of the polyaniline film was transformed to three-dimensional network structure instead of little particles while the deposition time was extended. The peak wavelength of the photoluminescence spectrum was 491 nm. The luminous intensity increased with the extension of deposition time, and so did the electrochemical activity. 展开更多
关键词 POLYANILINE ELECTRODEPOSITION PHOTOLUMINESCENCE Electrochemical activity
下载PDF
Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles 被引量:2
19
作者 Shiming Chen Siglinda Perathoner +4 位作者 Claudio Ampelli Hua Wei Salvatore Abate Bingsen Zhang Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期22-32,共11页
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga... The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances. 展开更多
关键词 Ammonia direct synthesis Electrochemical activation Heterogeneous catalysis active sites N2 electrocatalytic conversion
下载PDF
Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries 被引量:2
20
作者 Liang Fang Limin Zhou +3 位作者 Lianmeng Cui Peixin Jiao Qinyou An Kai Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期320-327,I0007,共9页
Rechargeable aluminum batteries are believed as a promising next-generation energy-storage system due to abundant low-cost Al sources and high volumetric specific capacity.The Al-storage cathodes,however,are plagued b... Rechargeable aluminum batteries are believed as a promising next-generation energy-storage system due to abundant low-cost Al sources and high volumetric specific capacity.The Al-storage cathodes,however,are plagued by strong electrostatic interaction between host materials and carrier ions,leading to large overpotential and undesired cycling stability as well as sluggish ion diffusion kinetics.Herein,sulfur-linked carbonyl polymer based on perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA) as the cathode materials for ABs is proposed,which demonstrates a small voltage polarization(135 mV),a reversible capacity of 110 mAh g^(-1) at 100 mA g^(-1) even after 1200 cycles,and rapid Al-storage kinetics.Compared with PTCDA,the sulfide polymer possesses higher working voltage because of its lower LUMO energy level according to theoretical calculation.The ordered carbonyl active sites in sulfide polymer contribute to the maximized material utilization and rapid ion coordination and dissociation,resulting in superior rate capability.Besides,the bridged thioether bonds endow the polysulfide with robust and flexible structure,which inhibits the dissolution of active materials and improves cycling stability.This work implies the importance of ordered arrangement of redox active moieties for organic electrode,which provides the theoretical direction for the structural design of organic materials applied in multivalent-ion batteries. 展开更多
关键词 Aluminum batteries Organic materials Carbonyl polymer Electrochemical active sites Ordered arrangement
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部