期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection 被引量:4
1
作者 胥燕燕 高明明 +4 位作者 张国辉 王新华 李佳佳 王曙光 桑元华 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1936-1942,共7页
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det... An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters. 展开更多
关键词 electrochemically reduced graphene oxide Electrochemical detection Tetracycline Electrocatalytic activity Oxygen-containing functional groups
下载PDF
The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor 被引量:1
2
作者 PeiZhang Yu-Qiang Gou +5 位作者 Xia Gao Rui-Bin Bai Wen-Xia Chen Bo-Lu Sun Fang-Di Hu Wang-Hong Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第2期80-86,共7页
An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in pla... An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α), electron transfer number (n) and electrode reaction standard rate constant (ks) were 0.53, 2 and 3.4 s -1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70 × 10 ^-7 1.25 × 10^-5 M with the detection limit (s/n=3) of 1.84 × 10^-8 M. The assay was success- fully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2), area under curve (AUC), and plasma clearance (CL) were calculated to be 3.345 ± 0.647 rain, 5750 ±656.0 μg min/mL, and 5.891± 0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization), which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies. 展开更多
关键词 electrochemically reduced graphene oxide PHARMACOKINETICS Rat plasma RUTIN
下载PDF
Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)_2 composite synthesized by a facile hydrothermal route 被引量:3
3
作者 郑翠红 刘欣 +2 位作者 陈志道 伍振飞 方道来 《Journal of Central South University》 SCIE EI CAS 2014年第7期2596-2603,共8页
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke... A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications. 展开更多
关键词 SUPERCAPACITORS reduced graphene oxide nickel hydroxide hydrothermal method electrochemical performance
下载PDF
Synthesis and electrochemical properties of environmental free Lglutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing 被引量:1
4
作者 N.Dhanalakshmi T.Priya +2 位作者 S.Thennarasu S.Sivanesan N.Thinakaran 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第1期48-56,共9页
A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite(glutathione-GO/ZnO)as electrode material for the high-performance piroxicam sensor.The prepared glutathi... A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite(glutathione-GO/ZnO)as electrode material for the high-performance piroxicam sensor.The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction(XRD),Fourier transform infrared spectrum(FTIR),X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FE-SEM),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam(oxidation potential is 0.52 V).Under controlled experimental parameters,the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM.The detection limit and sensitivity were calculated as 1.8 μM and 0.2 μA/μM·cm^(2),respectively.Moreover,it offered excellent selectivity,reproducibility,and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration.Finally,the reported sensor was successfully employed to the direct determination of piroxicam in practical samples. 展开更多
关键词 reduced graphene oxide GLUTATHIONE ZNO PIROXICAM Electrochemical sensing
下载PDF
Layer by Layer Self-assembly Fiber-based Flexible Electrochemical Transistor
5
作者 谭艳 HAO Panpan +2 位作者 HE Yang ZHU Rufeng 王跃丹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期937-944,共8页
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo... Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application. 展开更多
关键词 layer by layer SELF-ASSEMBLY fiber based organic electrochemical transistor reduced graphene oxide PEDOT:PSS
下载PDF
还原氧化石墨烯复合多孔碳材料的制备及电化学性能研究
6
作者 刘江涛 王万琴 +3 位作者 卯海鹏 王振波 钟明全 邹雪锋 《化工新型材料》 CAS CSCD 北大核心 2024年第3期81-87,共7页
通过交联及脱水控制,构筑了系列不同疏松度的氧化石墨烯/淀粉复合水凝胶(GO/AM)并利用火焰等离子体诱导燃烧、惰性气氛保护热分解等手段碳化合成了系列还原氧化石墨烯复合多孔碳材料(RGO-PC)。研究发现,GO不仅能够与AM在交联反应过程中... 通过交联及脱水控制,构筑了系列不同疏松度的氧化石墨烯/淀粉复合水凝胶(GO/AM)并利用火焰等离子体诱导燃烧、惰性气氛保护热分解等手段碳化合成了系列还原氧化石墨烯复合多孔碳材料(RGO-PC)。研究发现,GO不仅能够与AM在交联反应过程中实现均匀复合,而且在碳化过程中可诱导AM转化成多孔复合结构,并提高复合材料的导电性。同时,通过脱水控制可有效控制GO/AM-WG的疏松度,影响碳化后材料的结构特性。此外,通过火焰等离子体诱导碳化更利于材料形成多孔褶皱结构。结果表明,利用冷冻干燥和真空干燥获得的水凝胶碳化后的比电容分别是鼓风常压干燥的1.6倍和1.5倍;利用火焰等离子体诱导燃烧碳化后的比电容为惰性气氛保护热分解碳化的2.6倍左右。 展开更多
关键词 还原氧化石墨烯 多孔碳 火焰等离子体 电化学性能
下载PDF
Electrochemically metal-doped reduced graphene oxide films:Properties and applications
7
作者 Myung-Sic Chae Tae Ho Lee +3 位作者 Kyung Rock Son Tae Hoon Park Kyo Seon Hwang Tae Geun Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期72-80,共9页
The fine control of doping levels in graphene materials such as reduced graphene oxide(RGO)is important to properly manipulate their ambipolar transport characteristics for various device applications.However,conventi... The fine control of doping levels in graphene materials such as reduced graphene oxide(RGO)is important to properly manipulate their ambipolar transport characteristics for various device applications.However,conventional doping methods involve complex chemical reactions,large-scale doping processes,and poor stability.Herein,a simple and controllable electrochemical doping treatment(EDT),performed via the conductive channels created at the RGO surface by the application of an electric field,is introduced to tailor the electrical properties of RGO films.X-ray photoelectron spectroscopy and Raman spectroscopy measurements are performed to detect the presence of Ni atoms in RGO films after the EDT(EDT-RGO).Then,EDT-RGO field-effect transistors(FETs)are fabricated with different doping areas(0 to 100%fractional area)on the RGO active channel to investigate the effect and selective-area doping capability of the EDT.Owing to p-type doping compensation by the intercalated Ni atoms,the electron mobility of the EDT-RGO FET decreases from 1.40 to 0.12 cm2 V-1s-1 compared with that of the undoped RGO-FET,leading to the conversion from ambipolar to unipolar p-type transfer characteristics. 展开更多
关键词 reduced graphene oxide Electrochemical DOPING treatment Electrical BREAKDOWN process FIELD-EFFECT TRANSISTOR
原文传递
CBC@rGO复合电极材料的制备及其电化学性能
8
作者 侯嫔 孙新雨 +3 位作者 薛思源 王振宇 廖雪宇 王建兵 《实验室研究与探索》 CAS 北大核心 2023年第6期18-22,59,共6页
为了研发高效降解水中苯酚的电化学技术,将玉米芯生物质炭(CBC)负载于导电性能好的还原氧化石墨烯(rGO)上,制备得到高性能复合电极材料CBC@rGO。通过循环伏安测试CBC@rGO的电化学性能,通过扫描电子显微镜仪器、BET比表面积及孔径分析仪... 为了研发高效降解水中苯酚的电化学技术,将玉米芯生物质炭(CBC)负载于导电性能好的还原氧化石墨烯(rGO)上,制备得到高性能复合电极材料CBC@rGO。通过循环伏安测试CBC@rGO的电化学性能,通过扫描电子显微镜仪器、BET比表面积及孔径分析仪和X射线光电子能谱分析仪等表征物化性能,探讨CBC@rGO高效降解水中苯酚的影响规律;基于电化学降解实验,获得CBC@rGO对水中苯酚的最佳去除效果。结果表明:CBC@rGO的最大比电容为125.82 F/g(扫描速率为10 mV/s),与其比表面积、总孔容量及F-C-F键强度成正比;0~10 min内,CBC@rGO对苯酚的降解速率(k=0.025 81 L·mol^(-1)·s^(-1))明显高于CBC和rGO。由此,CBC@rGO作为一种绿色高效的电极材料,可明显提高其导电能力并解决石墨烯纳米材料的团聚问题,为水中苯酚的高效去除提供了新的技术和方法。 展开更多
关键词 玉米芯生物质炭 还原氧化石墨烯 复合电极材料 电化学降解
下载PDF
纳米金/还原氧化石墨烯修饰的盐酸环丙沙星分子印迹电化学传感器
9
作者 闫长领 王公珂 张瑞星 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期89-96,共8页
以吡咯和邻苯二胺为功能单体,以盐酸环丙沙星为模板,在纳米金和还原氧化石墨烯(AuNP/rGO)修饰的玻碳电极上,采用电化学方法制备分子印迹聚合物薄膜电化学传感器.利用扫描电镜对修饰电极表面形貌进行表征;电化学技术测试分子印迹传感器性... 以吡咯和邻苯二胺为功能单体,以盐酸环丙沙星为模板,在纳米金和还原氧化石墨烯(AuNP/rGO)修饰的玻碳电极上,采用电化学方法制备分子印迹聚合物薄膜电化学传感器.利用扫描电镜对修饰电极表面形貌进行表征;电化学技术测试分子印迹传感器性能.研究了纳米金和还原氧化石墨烯用量对电极电化学性能的影响,并对传感器制备和测试条件进行了优化.在优化条件下,分子印迹传感器对盐酸环丙沙星具有宽的线性检测范围(1.0×10^(-8)~1.0×10^(-2)mol/L),低检测限(7.41×10^(-12)mol/L(S/N=3)),选择性高,稳定性好.此外,该传感器成功检测出了实际药品和牛奶样品中的盐酸环丙沙星. 展开更多
关键词 分子印迹 纳米金颗粒 还原氧化石墨烯 盐酸环丙沙星 电化学传感器
下载PDF
基于中空多孔金纳米/石墨烯复合纳米材料的葡萄糖氧化酶直接电化学及其生物传感研究 被引量:2
10
作者 尹学虎 杨新杰 +4 位作者 罗丹 张艳丽 王红斌 杨文荣 庞鹏飞 《分析测试学报》 CAS CSCD 北大核心 2023年第3期315-322,共8页
采用溶液相牺牲模板法制备中空多孔金纳米粒子(HPAuNPs),并将该材料与还原氧化石墨烯(rGO)复合,用于葡萄糖氧化酶(GOx)在玻碳电极(GCE)表面的有效固定,构建GOx/HPAuNPs/rGO/GCE传感界面。利用扫描和透射电镜、X射线光电子能谱、X射线衍... 采用溶液相牺牲模板法制备中空多孔金纳米粒子(HPAuNPs),并将该材料与还原氧化石墨烯(rGO)复合,用于葡萄糖氧化酶(GOx)在玻碳电极(GCE)表面的有效固定,构建GOx/HPAuNPs/rGO/GCE传感界面。利用扫描和透射电镜、X射线光电子能谱、X射线衍射谱、红外光谱及电化学等方法对材料的形貌与结构,GOx的固定化过程,以及传感器的直接电化学和电催化性能进行表征。结果表明,HPAuNPs和rGO的协同作用能有效促进GOx与电极之间的直接电子转移(DET)。基于GOx/HPAuNPs/rGO/GCE对葡萄糖的良好电催化性能,该方法有效实现了对葡萄糖的高灵敏度检测,其电流响应的线性范围为0.05~7.0 mmol/L,检出限(S/N=3)为16μmol/L。该传感器具有良好的选择性、重现性及稳定性,对实际样品血清中血糖的测定结果令人满意,回收率为98.0%~103%,相对标准偏差不大于5.0%。 展开更多
关键词 葡萄糖氧化酶 中空多孔金纳米 还原氧化石墨烯 电化学传感器
下载PDF
螺旋霉素的电化学检测研究
11
作者 秦洪伟 刘妍 《现代化工》 CAS CSCD 北大核心 2023年第6期245-248,共4页
通过恒电位还原氧化石墨烯的方法制备电化学还原氧化石墨烯修饰电极(rGO/GCE),再结合浸渍法制备出电化学还原氧化石墨烯纳米银复合修饰电极(rGO-AgNPs/GCE)。考察了螺旋霉素(SPY)在rGO-AgNPs/GCE上的电化学响应情况,并对修饰量、电还原... 通过恒电位还原氧化石墨烯的方法制备电化学还原氧化石墨烯修饰电极(rGO/GCE),再结合浸渍法制备出电化学还原氧化石墨烯纳米银复合修饰电极(rGO-AgNPs/GCE)。考察了螺旋霉素(SPY)在rGO-AgNPs/GCE上的电化学响应情况,并对修饰量、电还原时间、浸渍时间、支持电解质种类及酸碱度等实验条件进行优化。结果显示,在2.0×10^(-6)~1.0×10^(-4)mol/L浓度范围内,SPY氧化峰电流与其浓度呈显著的线性关系,线性方程为I_(p)=0.5285c+26.085,r=0.9973,检测下限为4.0×10^(-7)mol/L。稳定性、可重复性和回收率实验取得令人满意的结果。 展开更多
关键词 纳米银 电化学还原氧化石墨烯 电化学检测 螺旋霉素
下载PDF
硫化镍/还原氧化石墨烯复合材料的制备及电化学储能性能研究 被引量:1
12
作者 邹雪锋 徐林坤 +3 位作者 冯塑尧 张浩 龙澄杰 沈虎峻 《化工新型材料》 CAS CSCD 北大核心 2023年第12期118-123,132,共7页
通过水热法、火焰辅助微波法等控制氧化石墨烯(GO)的还原度,制备了一系列具有不同还原度的还原氧化石墨烯(RGO),并以这些RGO为前驱体,以六水氯化镍(NiCl_(2)·6H_(2)O)、2-巯基丙酸(C_(3)H_6O_(2)S)为镍源和硫源,通过水热法合成了... 通过水热法、火焰辅助微波法等控制氧化石墨烯(GO)的还原度,制备了一系列具有不同还原度的还原氧化石墨烯(RGO),并以这些RGO为前驱体,以六水氯化镍(NiCl_(2)·6H_(2)O)、2-巯基丙酸(C_(3)H_6O_(2)S)为镍源和硫源,通过水热法合成了系列硫化镍/RGO(NS/RGO)复合材料。通过粉末X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和电化学工作站对材料的晶型结构、形貌特征及电化学储能性能进行了研究。结果表明:RGO的还原度高低不仅显著地影响了NS的晶型结构,而且改变了NS的形貌特征;利用超过140℃水热还原获得的RGO制得的NS/RGO复合材料中NS晶型以Ni_(3)S_(4)主,且形貌由棒状变成了球状;尤其,利用140℃还原获得的RGO制备的NS/RGO具有最强的电化学储能能力,比电容高达3331.6F/g。可为下一代新型电极活性材料的设计和构筑提供新思路。 展开更多
关键词 还原氧化石墨烯 硫化镍 水热法 电化学储能
下载PDF
High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure 被引量:3
13
作者 Jun Ma Shaochun Tang +2 位作者 Junaid Ali Syed Dongyun Su Xiangkang Meng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第7期1103-1109,共7页
The sandwich-like structure of reduced graphene oxide/polyaniline (RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of P... The sandwich-like structure of reduced graphene oxide/polyaniline (RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The R(;O/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 mA/cm2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 mF cm^-2. Also, it delivers a high energy density of 45.5 mW h cm^-2 at power density of 1250 mW cm^-2. Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6Z initial capacitance retention after 5000 cycles. Such composite electrode has a great potential for applications in flexible electronics, roll-up display, and wearable devices.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. 展开更多
关键词 Hybrid electrode Asymmetric supercapacitor Sandwich-like Electrochemical reduced graphene oxide
原文传递
Facile Synthesis of NiFe_2O_4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance 被引量:2
14
作者 Peiyi Zhu Shuangyu Liu +3 位作者 Jian Xie Shichao Zhang Gaoshao Cao Xinbing Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第11期1078-1083,共6页
In this work, a facile, one-pot route has been applied to synthesize nanohybrids based on mixed oxide NiFe2O4 and reduced graphene oxide (rGO). The hybrid is constructed by nanosized NiFe2O4 crystals confined by few... In this work, a facile, one-pot route has been applied to synthesize nanohybrids based on mixed oxide NiFe2O4 and reduced graphene oxide (rGO). The hybrid is constructed by nanosized NiFe2O4 crystals confined by few- layered rGO sheets. The formation mechanism and microstructure of the hybrids have been clarified by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical tests show that the performance of NiFe2O4 can be considerably improved by rGO incorporation. The performance improvement can be attributed to the two-dimensional conductive channels and the unique hybrid structure rGO constructed. The easy synthesis and good electrochemical performance of NiFe2O4/rGO hybrid make it a promising anode material for Li-ion batteries. 展开更多
关键词 reduced graphene oxide Nickel ferrite oxide NANOHYBRID Electrochemical performance One-pot synthesis
原文传递
Preparation of Molecularly Imprinted Electrochemical Sensor for Detection of Vincristine Based on Reduced Graphene Oxide/Gold Nanoparticle Composite Film 被引量:1
15
作者 Yan Zhang Jing Zheng Mandong Guo 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2016年第12期1268-1276,共9页
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO-Au composite membrane... An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO-Au composite membrane was obtained via direct one-step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range be- tween -1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO-Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross-linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in de- tail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10 8 5.0×10^-6 mol.L l with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10 8 mol.L^-1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90%-- 120% by using the standard addition method. 展开更多
关键词 molecularly imprinted polymers electrochemical sensor reduced graphene oxide and gold nanocom-posites VINCRISTINE
原文传递
Enhanced electrocatalytic CO_(2)reduction to formic acid using nanocomposites of In_(2)O_(3)@C with graphene
16
作者 Wenxiang Li Shuo Gao +4 位作者 Chuanruo Yang Juntao Yang Amjad Nisar Guolei Xiang Junsu Jin 《Nano Research》 SCIE EI CSCD 2024年第6期5031-5039,共9页
In_(2)O_(3)is an effective electrocatalyst to convert CO_(2)to formic acid(HCOOH),but its inherent poor electrical conductivity limits the efficient charge transfer during the reaction.Additionally,the tendency of In_... In_(2)O_(3)is an effective electrocatalyst to convert CO_(2)to formic acid(HCOOH),but its inherent poor electrical conductivity limits the efficient charge transfer during the reaction.Additionally,the tendency of In_(2)O_(3)particles to agglomerate during synthesis further limits the exposure of active sites.Here we address these issues by leveraging the template effect of graphene oxide and employing InBDC as a self-sacrificing template for the pyrolysis synthesis of In_(2)O_(3)@C.The resulting In_(2)O_(3)@C/rGO-600 material features In_(2)O_(3)@C nanocubes uniformly anchored on a support of reduced graphene oxide(rGO),significantly enhancing the active sites exposure.The conductive rGO network facilitates charge transfer during electrocatalysis,and the presence of oxygen vacancies generated during pyrolysis,combined with the strong electron-donating ability of rGO,enhances the adsorption and activation of CO_(2).In performance evaluation,In_(2)O_(3)@C/rGO-600 exhibits a remarkable HCOOH Faradaic efficiency exceeding 94.0%over a broad potential window of−0.7 to−1.0 V(vs.reversible hydrogen electrode(RHE)),with the highest value of 97.9%at−0.9 V(vs.RHE)in a H-cell.Moreover,the material demonstrates an excellent cathodic energy efficiency of 71.6%at−0.7 V(vs.RHE).The study underscores the efficacy of uniformly anchoring metal oxide nanoparticles onto rGO for enhancing the electrocatalytic CO_(2)reduction performance of materials. 展开更多
关键词 In_(2)O_(3)@C nanocomposite electrochemical CO_(2)reduction reduced graphene oxide oxygen vacancy
原文传递
Electrodeposition of Prussian Blue Nanoparticles on Electro- chemically Reduced Graphene Oxide and Synergistically Elec- trocatalytic Activity toward Guanine
17
作者 杨涛 关茜 +2 位作者 马苏艳 李乾和 焦奎 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第9期1966-1969,共4页
In this paper, a simple and reliable fabrication method about electrochemically reduced graphene oxide (ERGNO)-prussian blue (PB) nanocomposite was proposed for determination of guanine. Due to its unique struc- t... In this paper, a simple and reliable fabrication method about electrochemically reduced graphene oxide (ERGNO)-prussian blue (PB) nanocomposite was proposed for determination of guanine. Due to its unique struc- tural, physical and chemical properties, ERGNO, which was fabricated on the carbon paste electrode (CPE) before- hand through electrochemical reduction of graphene oxide, was selected as a compatible precursor for next-step PB electrodeposition. Electrochemical behaviors of the resulted PB/ERGNO/CPE were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electro- chemical results showed that PB/ERGNO/CPE exhibited good electrochemical performances. The electrocatalytic results of guanine further illustrated that graphene prompted the electrocatalytie ability of PB via the redox shift between PB and prussian yellow (PY) in the potential range from 0.5 to 1.2 V, which has not been widely adopted in the PB based electrochemical sensors. The detection limit of guanine could be calculated to be 1.0 × 10^-8 mol/L. It means this PB/ERGNO/CPE platform is quite sensitive and can be readily applied in biosensor field. 展开更多
关键词 prussian blue electrochemically reduced graphene oxide electrochemical deposition guanine detec-tion
原文传递
Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol
18
作者 Shuyao Wu Chengquan Sui +7 位作者 Chong Wang Yulu Wang Dongqing He Ying Sun Yu Zhang Qingbo Meng Tianyi Ma Xi-Ming Song 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第6期1572-1582,共11页
High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction.The positive gold nanoparticl... High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction.The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility,which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions.The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity,larger specific surface area,biocompatibility and electrocatalytic characteristics.The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode.The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase,which was beneficial to the enzyme-catalyzed reaction.The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5–280.5μmol·L^(−1),a low detection limit of 2.1μmol·L^(−1),good stability and reproducibility.Moreover,the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples. 展开更多
关键词 reduced graphene oxide gold nanoparticles electrochemical biosensor cholesterol oxidase CHOLESTEROL
原文传递
Co3O4/reduced Graphene Oxide Composite as An Enhanced Material for Electrochemical Detection of Paracetamol in Human Serum
19
作者 CHEN Hua-Lin HUANG Qi-Tong +3 位作者 HU Shi-Rong TANG Shu-Li YANG Hao LI Zhan-Ming 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第6期1035-1043,共9页
In this paper,we present a novel,reliable and sensitive electrochemical sensor for the determination of paracetamol based on hollow carbon Co3O4 nanosheets/reduced graphene oxide composite(Co3O4/r-GO).The Co3O4/r-GO w... In this paper,we present a novel,reliable and sensitive electrochemical sensor for the determination of paracetamol based on hollow carbon Co3O4 nanosheets/reduced graphene oxide composite(Co3O4/r-GO).The Co3O4/r-GO was prepared via a rapid one-step microwave solvothermal process.Some series of techniques that included scanning electron microscopy,X-ray diffraction and Raman were carried out to characterize the morphology and structure of as-prepared materials.Most importantly,the developed electrochemical sensor exhibited a wide linear range of 0.05 to 900.0μM and a low detection limit of 14.0 nM(S/N=3)by using differential pulse voltammetry.Furthermore,the selectivity,repeatability,stability and practical applicability were further studied with satisfactory results. 展开更多
关键词 Co3O4 nanosheets reduced graphene oxide PARACETAMOL electrochemical sensor
原文传递
电化学还原氧化石墨烯/纳米金-壳聚糖复合膜修饰玻碳电极对尿酸的灵敏测定 被引量:13
20
作者 吴玲 曹忠 +4 位作者 宋天铭 宋铖 谢晶磊 何婧琳 肖忠良 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第11期1656-1660,共5页
将氧化石墨烯(GO)在玻碳电极(GCE)表面进行直接电化学还原,再组装上纳米金-壳聚糖(AuNP-CS)聚阳离子,形成了电化学还原氧化石墨烯/纳米金-壳聚糖(ERGO/AuNP-CS)复合膜修饰的玻碳电极。采用扫描电子显微镜(SEM)表征了不同修... 将氧化石墨烯(GO)在玻碳电极(GCE)表面进行直接电化学还原,再组装上纳米金-壳聚糖(AuNP-CS)聚阳离子,形成了电化学还原氧化石墨烯/纳米金-壳聚糖(ERGO/AuNP-CS)复合膜修饰的玻碳电极。采用扫描电子显微镜(SEM)表征了不同修饰膜表面的形貌,探讨了其对尿酸(UA)分子的差分脉冲伏安(DPV)行为,发现ERGO/AuNP-CS复合膜对UA分子表现出显著的电催化氧化活性。在0.10mol/L磷酸盐缓冲溶液(pH=6.5)中,扫速为100mV/s时,此复合膜修饰电极的DPV响应与UA的浓度在0.05-110μmol/L范围内呈性关系,检测限为12.4nmol/L(S/N=3)。此修饰电极具有良好的选择性、重现性和稳定性,可应用于人体血清和尿液样品中UA的测定,回收率达到93.8%-104.1%。结果与分光光度法和尿酸酶试剂盒法相符。 展开更多
关键词 电化学还原氧化石墨烯 纳米金-壳聚糖聚阳离子 尿酸 电催化氧化 修饰电极
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部