期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Handily etching nickel foams into catalyst-substrate fusion self‐stabilized electrodes toward industrial‐level water electrolysis
1
作者 Zexuan Zhu Xiaotian Yang +2 位作者 Jiao Liu Mingze Zhu Xiaoyong Xu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期2-12,共11页
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba... The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis. 展开更多
关键词 alkaline water electrolysis industrially relevant conditions oxygen evolution reaction self‐stabilized electrodes
下载PDF
Direct observation of the CO_(2) formation and C–H consumption of carbon electrode in an aqueous neutral electrolyte supercapacitor by in-situ FTIR and Raman
2
作者 Murilo M.Amaral Victor Y.Yukuhiro +4 位作者 Rafael Vicentini Alfredo C.Peterlevitz Leonardo M.Da Silva Pablo Fernandez Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期488-496,I0013,共10页
Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their o... Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their overall energy storage capabilities.Therefore,the stability of the EDLCs’materials is the primary focus of this study.Since energy storage depends on the specific capacitance,and also on the square of the maximum capacitive cell voltage(UMCV).Thus,electrodes with high specific surface area(SSA)and electrolytes with excellent electrochemical stability are commonly reported in the literature.Aqueous electrolytes are safer and green devices compared to other organic-based solutions.On the other hand,their UMCVis reduced compared to other electrolytes(e.g.,organic-based and ionic liquids).In this sense,spanning the UMCVfor aqueous-based electrolytes is a’hot topic’research.Unfortunately,the lack of protocols to establish reliable UMCVvalues has culminated in the publishing of several conflicting results.Herein,we confirm that multiwalled carbon nanotubes(MWCNTs)housed in cells degrade and produce CO_(2) under abusive polarisation conditions.It is probed by employing electrochemical techniques,in-situ FTIR and in-situ Raman spectroscopies.From these considerations,the current study uses spectro-electrochemical techniques to support the correct determination of the electrode and electrolyte stability conditions as a function of the operating electrochemical parameters. 展开更多
关键词 electrode and electrolyte stabilities In-situ FTIR CO_(2)formation Carbon degradation SUPERCAPACITOR Aqueous electrolytes Carbon nanotubes
下载PDF
Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells 被引量:1
3
作者 Na Ai Yuanfeng Zou +2 位作者 Zhiyi Chen Kongfa Chen San Ping Jiang 《Materials Reports(Energy)》 2021年第2期61-69,共9页
Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governi... Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governing the efficiency and durability of SOCs technology is the stability of the interface between oxygen electrode and electrolyte,which is conventionally formed by sintering at a high temperature of~1000–1250℃,and which suffers from delamination problem,particularly for reversibly operated SOCs.On the other hand,our recent studies have shown that the electrode/electrolyte interface can be in situ formed by a direct assembly approach under the electrochemical polarization conditions at 800℃and lower.The direct assembly approach provides opportunities for significantly simplifying the cell fabrication procedures without the doped ceria barrier layer,enabling the utilization of a variety of high-performance oxygen electrode materials on barrier layer–free yttria-stabilized zirconia(YSZ)electrolyte.Most importantly,the in situ polarization induced interface shows a promising potential as highly active and durable interface for reversible SOCs.The objective of this progress report is to take an overview of the origin and research progress of in situ fabrication of oxygen electrodes based on the direct assembly approach.The prospect of direct assembly approach in the development of effective SOCs and in the fundamental studies of electrode/electrolyte interface reactions is discussed. 展开更多
关键词 Reversible solid oxide cell Direct assembly Oxygen electrode Hydrogen electrode Polarization induced interface electrode/electrolyte interface stability
下载PDF
Fabrication of sintering-free flexible copper nanowire/ polymer composite transparent electrodes with enhanced chemical and mechanical stability 被引量:6
4
作者 Cho Rong Chu Changsoo Lee +1 位作者 Jahyun Koo Hyuck Mo Lee 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2162-2173,共12页
The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride... The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride to nickel acetylacetonate, temperature, and stirring rate on the final shape of the products. Transparent electrodes (TEs) were fabricated by wet treatment with acetic acid (AA), without using a sintering process. The low oxidation stability and high surface roughness are the main disadvantages of the CuNW TEs, which limit their applications. In order to overcome these issues, we prepared CuNW/polymer composite TEs by partial embedding of the CuNWs into poly(methyl methacrylate) (PMMA) on poly(ethylene terephthalate) (PET) substrates. The CuNW/PMMA composite TEs exhibit excellent optoelectronic performance (91.3% at 100.7 ff2/sq), low surface roughness (4.6 nm in height), and good mechanical and chemical stability as compared with CuNW TEs. On the basis of these properties, we believe that CuNW-based composite TEs could serve as low-cost materials for a wide range of new optoelectronic devices. 展开更多
关键词 copper nanowires nanowire/polymercomposite transparent electrode chemical stability mechanical stability
原文传递
Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells 被引量:4
5
作者 Yunxia Jin Yong Sun +4 位作者 Kaiqing Wang Yani Chen Ziqi Liang Yuxi Xu Fei Xiao 《Nano Research》 SCIE EI CAS CSCD 2018年第4期1998-2011,共14页
As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have bee... As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode. 展开更多
关键词 silver nanowire ascorbic-acid-modified chitosan transparent composite electrode stability perovskite solar cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部