GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) ...GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.展开更多
基金supported by the Natural Science Foundation of China(Nos.61306051,61306050)the National High Technology Program of China(No.2014AA032606)
文摘GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.