On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ...On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of ch...Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition.展开更多
Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrite...Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.展开更多
Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying proce...Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes.Herein,the improved binder-free tin-copper intermetallic/carbon nanotubes(Cu6Sn5/CNTs)alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards(WPCBs).The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1.Moreover,the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g^(−1)after 50 cycles at 100 mA·g^(−1)within capacity retention of 82.58%but also deliver a relatively high reversible specific capacity of 518.24,445.52,418.18,345.33,and 278.05 mAh·g^(−1)at step-increased current density of 0.1,0.2,0.5,1.0,and 2.0 A·g^(−1),respectively.Therefore,the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries.展开更多
A robust and green strategy for the selective upgrading of biomass-derived platform chemicals towards highly valuable products is important for the sustainable development.Herein,the efficient electrocatalytic oxidati...A robust and green strategy for the selective upgrading of biomass-derived platform chemicals towards highly valuable products is important for the sustainable development.Herein,the efficient electrocatalytic oxidation of biomass-derived furfuryl alcohol(FFA)into furoic acid(FurAc)catalyzed by the electrodeposited non-precious NiFe microflowers was successfully reached under the low temperature and ambient pressure.The 3D hierarchical NiFe microflowers assembled from ultrathin nanosheets were controllably synthesized by the electrodeposition method and uniformly grown on carbon fiber paper(CFP).Electrochemical analysis confirmed that NiFe nanosheets more preferred in the selective oxidation of FFA(FFAOR)than oxygen evolution reaction(OER).The linear sweep voltammetry(LSV)in FFAOR displayed a clear decrease towards lower potential,resulting in 30 mV reduction of overpotential at 20 mA cm^(-2) compared with that of OER.The optimal catalyst Ni_(1)Fe_(2) nanosheets exhibited the highest selectivity of FurAc(94.0%)and 81.4%conversion of FFA within 3 h.Besides,the influence of various reaction parameters on FFAOR was then explored in details.After that,the reaction pathway was investigated and rationally proposed.The outstanding performance for FFAOR can be ascribed to the unique structure of 3D flower-like NiFe nanosheets and oxygen vacancies,resulting in large exposure of active sites,faster electron transfer and enhanced adsorption of reactants.Our findings highlight a facile and convenient mean with a promising green future,which is promising for processing of various biomass-derived platform chemicals into value-added products.展开更多
As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted ele...As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted electrodeposition is used to improve the surface quality and properties of Zn–Ni–Mo coatings,with investigation of how laser energy in the range of 0–21.1μJ affects their element content,surface morphology,crystal phase,microhardness,residual internal stress,and corrosion resistance.The laser irradiation accelerates the electrodeposition,refines the grain size,improves the hydrogen adsorption,and reduces the residual tensile stress,and a laser energy of 15.4μJ gives the highest Ni and Mo contents and the lowest Zn content,as well as the optimum surface morphology,microhardness,residual internal stress,and corrosion resistance of the coating.展开更多
Three types of electrodeposition,DC electrodeposition,low-frequency pulsed electrodeposition and high-frequency pulsed electrodeposition,were used to deposit cuprous oxide on the concrete surface to improve the antiba...Three types of electrodeposition,DC electrodeposition,low-frequency pulsed electrodeposition and high-frequency pulsed electrodeposition,were used to deposit cuprous oxide on the concrete surface to improve the antibacterial properties of concrete.The effects of pulse deposition frequency on the antibacterial property of concrete were studied using sulfate-reducing bacteria(SRB)and Escherichia coli(E.coli)as model bacteria.The bacterial concentration and the antibacterial rate were measured to evaluate the antibacterial performance of concrete.The effects of different deposition methods on the elemental content of copper and the amount of copper ions exuded were studied.XRD and SEM were used to analyze the microstructure of the deposited layers.The experimental results show that the concrete treated by electrodeposition exhibited good antibacterial properties against SRB and E.coli.The antibacterial effect of cuprous oxide deposited on concrete by pulse method was better than that by direct current(DC)method.The antibacterial rate of concrete was positively correlated with the exudation rate of copper ion.As the pulse frequency increased,the deposits content on the surface was increased with an accompanying improvement in the antibacterial property.Besides,the pulsed current had an indiscernible effect on the composition of the sediments,which were all mainly composed of Cu_(2)O,but the morphology of the Cu_(2)O differed greatly.Cubic octahedral cuprous oxide had better antibacterial properties with the highest copper ion leaching rate compared with cubic and spherical cuprous oxide.展开更多
The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication...The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication of enhanced performance TENGs using Ag octahedron nano-assemblies on ITO as electrodes significantly increases the electric charge collection of the induced tribocharges. Thereby, nanostructured electrical contacts coated with Ag macroscale nano-assemblies with octahedral features were obtained by the electrodeposition technique on flexible PET/ITO substrates. Consequently, the nanostructured triboelectric generator-TENG exhibited 65 times more maximum output power, and almost 10 times more open circuit output voltage than that of a TENG with non-nanostructured contacts passing from μW to m W capabilities, which was attributed to the increment of intrinsic interface states due to a higher effective contact area in the former. Likewise, output performances of TENGs also displayed an asymptotic behavior on the output voltage as the operating frequency of the mechanical oscillations increased, which is attributed to a decrement in the internal impedance of the device with frequency. Furthermore, it is shown that the resulting electrical output power can successfully drive low power consumption electronic devices. On that account, the present research establishes a promising platform which contributes in an original way to the development of the TENGs technology.展开更多
Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electr...Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.展开更多
The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode cur...The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.展开更多
α-Ni(OH)2 was synthesized from a NiCl2 solution by electrodeposition method.In order to conduct a systematic study on the effects of experimental parameters,a series of electrolyte initial pH values,current densities...α-Ni(OH)2 was synthesized from a NiCl2 solution by electrodeposition method.In order to conduct a systematic study on the effects of experimental parameters,a series of electrolyte initial pH values,current densities,electrodeposition temperatures,and electrodeposition time were used.Cyclic voltammetry results demonstrated a side reaction of Ni^2++2e→Ni.The X-ray diffraction analysis,Fourier-transform infrared spectrum,and the color of the product showed that pureα-Ni(OH)2 could be obtained in the initial pH value range of 2−5.86,current density range of 10−25 mA/cm^2,electrodeposition temperature range of 25−35℃,and electrodeposition time range of 1.0−3.0 h.When electrodeposition temperature increased to 45℃,a mixture ofα-Ni(OH)2 and metallic Ni was obtained.A current density higher than 30 mA/cm^2 resulted in the sample with features ofβ-Ni(OH)2.A small amount of metallic Ni existed in the as-prepared sample when current density decreased to 5 mA/cm^2.A slight increase of electrolyte pH was observed with increasing initial solution pH and current density.Electrodeposition mass revealed a slight decrease with initial pH decreasing and showed an almost linear increase with current density increasing.The slope of the curve for electrodeposition mass versus electrodeposition time remained stable in the first 2.0 h and then decreased.展开更多
The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and mi...The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and microstructure of composite were investigated by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD).The results show that the microstructure of electrodeposited layer transformed from bulk crystal to nano structure because of the participation of microcapsules.The diameters of microcapsules and the copper grain sizes in the composite were 2?20 μm and 10?20 nm,respectively.In addition,the electrodeposition mechanism of composite in the deposition process followed electrochemistry theory,which was proved by the theoretical analysis result and the experiment results.Meanwhile,the co-deposition process model was presented.展开更多
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo...Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.展开更多
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology ...In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.展开更多
The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic volta...The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.展开更多
Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Rama...Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.展开更多
The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and t...The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.展开更多
The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating i...The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
基金Funded by the National Natural Science Foundation of China(No.51873167)the Fundamental Research Funds for the Central Universities(WUT:2022-CL-A1-04)。
文摘On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金supported by the National Natural Science Foundation of China, No. 81871493 (to YC)the Medical Science Advancement Program (Clinical Medicine) of Wuhan University, No. TFLC2018003 (to YC)
文摘Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition.
基金Financial supports from the National Key Research and Development Program (2016YFB0100200)National Natural Science Foundation of China (21935006)。
文摘Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.
基金supported by the National Natural Science Foundation of China(Nos.52274292 and 51874046)the Outstanding Youth Foundation of Hubei Province,China(No.2020CFA090)the Young Topnotch Talent Cultivation Program of Hubei Province,China.
文摘Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes.Herein,the improved binder-free tin-copper intermetallic/carbon nanotubes(Cu6Sn5/CNTs)alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards(WPCBs).The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1.Moreover,the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g^(−1)after 50 cycles at 100 mA·g^(−1)within capacity retention of 82.58%but also deliver a relatively high reversible specific capacity of 518.24,445.52,418.18,345.33,and 278.05 mAh·g^(−1)at step-increased current density of 0.1,0.2,0.5,1.0,and 2.0 A·g^(−1),respectively.Therefore,the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries.
基金supported by Key Area Research and Development Program of Guangdong Province (2019B110209003)Guangdong Basic and Applied Basic Research Foundation (2019B1515120058,2020A1515011149)+2 种基金National Natural Science Foundation of China (22078374,21776324)National Key R&D Program of China (2018YFD0800703)National Ten Thousand Talent Plan,the Fundamental Research Funds for the Cornell University (19lgzd25)and Hundred Talent Plan (201602)from Sun Yat-sen University.
文摘A robust and green strategy for the selective upgrading of biomass-derived platform chemicals towards highly valuable products is important for the sustainable development.Herein,the efficient electrocatalytic oxidation of biomass-derived furfuryl alcohol(FFA)into furoic acid(FurAc)catalyzed by the electrodeposited non-precious NiFe microflowers was successfully reached under the low temperature and ambient pressure.The 3D hierarchical NiFe microflowers assembled from ultrathin nanosheets were controllably synthesized by the electrodeposition method and uniformly grown on carbon fiber paper(CFP).Electrochemical analysis confirmed that NiFe nanosheets more preferred in the selective oxidation of FFA(FFAOR)than oxygen evolution reaction(OER).The linear sweep voltammetry(LSV)in FFAOR displayed a clear decrease towards lower potential,resulting in 30 mV reduction of overpotential at 20 mA cm^(-2) compared with that of OER.The optimal catalyst Ni_(1)Fe_(2) nanosheets exhibited the highest selectivity of FurAc(94.0%)and 81.4%conversion of FFA within 3 h.Besides,the influence of various reaction parameters on FFAOR was then explored in details.After that,the reaction pathway was investigated and rationally proposed.The outstanding performance for FFAOR can be ascribed to the unique structure of 3D flower-like NiFe nanosheets and oxygen vacancies,resulting in large exposure of active sites,faster electron transfer and enhanced adsorption of reactants.Our findings highlight a facile and convenient mean with a promising green future,which is promising for processing of various biomass-derived platform chemicals into value-added products.
基金supported by the National Natural Science Foundation of China(Grant Nos.51905226,52075227,and 52105449)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210755)the Postdoctoral Foundation of Jiangsu Province(Grant No.2021K264B).
文摘As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted electrodeposition is used to improve the surface quality and properties of Zn–Ni–Mo coatings,with investigation of how laser energy in the range of 0–21.1μJ affects their element content,surface morphology,crystal phase,microhardness,residual internal stress,and corrosion resistance.The laser irradiation accelerates the electrodeposition,refines the grain size,improves the hydrogen adsorption,and reduces the residual tensile stress,and a laser energy of 15.4μJ gives the highest Ni and Mo contents and the lowest Zn content,as well as the optimum surface morphology,microhardness,residual internal stress,and corrosion resistance of the coating.
基金National Natural Science Foundation of China(Nos.52079048 and 52178203)the Natural Science Foundation of Jiangsu Province(BK20221503)+1 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil Mechanics,Chinese Academy of Sciences(Z020012)。
文摘Three types of electrodeposition,DC electrodeposition,low-frequency pulsed electrodeposition and high-frequency pulsed electrodeposition,were used to deposit cuprous oxide on the concrete surface to improve the antibacterial properties of concrete.The effects of pulse deposition frequency on the antibacterial property of concrete were studied using sulfate-reducing bacteria(SRB)and Escherichia coli(E.coli)as model bacteria.The bacterial concentration and the antibacterial rate were measured to evaluate the antibacterial performance of concrete.The effects of different deposition methods on the elemental content of copper and the amount of copper ions exuded were studied.XRD and SEM were used to analyze the microstructure of the deposited layers.The experimental results show that the concrete treated by electrodeposition exhibited good antibacterial properties against SRB and E.coli.The antibacterial effect of cuprous oxide deposited on concrete by pulse method was better than that by direct current(DC)method.The antibacterial rate of concrete was positively correlated with the exudation rate of copper ion.As the pulse frequency increased,the deposits content on the surface was increased with an accompanying improvement in the antibacterial property.Besides,the pulsed current had an indiscernible effect on the composition of the sediments,which were all mainly composed of Cu_(2)O,but the morphology of the Cu_(2)O differed greatly.Cubic octahedral cuprous oxide had better antibacterial properties with the highest copper ion leaching rate compared with cubic and spherical cuprous oxide.
基金Consejo Nacional de Ciencia y Tecnología of México (CONACYT) for her Doctoral scholarshippostgraduate studies department at CIMAVMonterrey for fellowship support。
文摘The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication of enhanced performance TENGs using Ag octahedron nano-assemblies on ITO as electrodes significantly increases the electric charge collection of the induced tribocharges. Thereby, nanostructured electrical contacts coated with Ag macroscale nano-assemblies with octahedral features were obtained by the electrodeposition technique on flexible PET/ITO substrates. Consequently, the nanostructured triboelectric generator-TENG exhibited 65 times more maximum output power, and almost 10 times more open circuit output voltage than that of a TENG with non-nanostructured contacts passing from μW to m W capabilities, which was attributed to the increment of intrinsic interface states due to a higher effective contact area in the former. Likewise, output performances of TENGs also displayed an asymptotic behavior on the output voltage as the operating frequency of the mechanical oscillations increased, which is attributed to a decrement in the internal impedance of the device with frequency. Furthermore, it is shown that the resulting electrical output power can successfully drive low power consumption electronic devices. On that account, the present research establishes a promising platform which contributes in an original way to the development of the TENGs technology.
基金financially supported by the National Natural Science Foundation of China(No.41706080)the Basic Frontier Science Research Program of the Chinese Academy of Sciences(No.ZDBS-LYDQC025)+1 种基金the Strategic Leading Science and Technology Program of the Chinese Academy of Sciences(No.XDA13040403)the Shandong Key Laboratory of Corrosion Science。
文摘Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.
基金Project(2015BAB17B01)supported by the National Science and Technology Support Program of ChinaProject(21376273)supported by the National Natural Science Foundation of China
文摘The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.
基金Project(U1710257)supported by the National Natural Science Foundation of China。
文摘α-Ni(OH)2 was synthesized from a NiCl2 solution by electrodeposition method.In order to conduct a systematic study on the effects of experimental parameters,a series of electrolyte initial pH values,current densities,electrodeposition temperatures,and electrodeposition time were used.Cyclic voltammetry results demonstrated a side reaction of Ni^2++2e→Ni.The X-ray diffraction analysis,Fourier-transform infrared spectrum,and the color of the product showed that pureα-Ni(OH)2 could be obtained in the initial pH value range of 2−5.86,current density range of 10−25 mA/cm^2,electrodeposition temperature range of 25−35℃,and electrodeposition time range of 1.0−3.0 h.When electrodeposition temperature increased to 45℃,a mixture ofα-Ni(OH)2 and metallic Ni was obtained.A current density higher than 30 mA/cm^2 resulted in the sample with features ofβ-Ni(OH)2.A small amount of metallic Ni existed in the as-prepared sample when current density decreased to 5 mA/cm^2.A slight increase of electrolyte pH was observed with increasing initial solution pH and current density.Electrodeposition mass revealed a slight decrease with initial pH decreasing and showed an almost linear increase with current density increasing.The slope of the curve for electrodeposition mass versus electrodeposition time remained stable in the first 2.0 h and then decreased.
基金Project(50771010) supported by the National Natural Science Foundation of China
文摘The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and microstructure of composite were investigated by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD).The results show that the microstructure of electrodeposited layer transformed from bulk crystal to nano structure because of the participation of microcapsules.The diameters of microcapsules and the copper grain sizes in the composite were 2?20 μm and 10?20 nm,respectively.In addition,the electrodeposition mechanism of composite in the deposition process followed electrochemistry theory,which was proved by the theoretical analysis result and the experiment results.Meanwhile,the co-deposition process model was presented.
文摘Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.
基金Projects(51171172,51131005)supported by the National Natural Science Foundation of ChinaProject(R16E010001)supported by Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(2015QNA3011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(14DZ2261000)supported by Science and Technology Commission of Shanghai Municipality,China
文摘In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.
基金Projects(51274108,21263007,51204080)supported by the National Natural Science Foundation of ChinaProject(2011FA009)supported by the Applied Research Foundation of Yunnan Province,ChinaProject(14118441)supported by the Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.
基金Project (2006CB600903) supported by the National Basic Research Program of ChinaProject (2010GK3208) supported by Science and Technology Program of Hunan Province, China
文摘Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.
基金Project(2015016)supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University,ChinaProject(2015BAE04B01)supported by the National Science-technology Support Program of ChinaProject(21466019)supported by the National Natural Science Foundation of China
文摘The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.
文摘The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.