A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit...A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit.The corrosion properties against 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide were also discussed.The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wea than hard chromium deposits under dry sliding condition.Under oil sliding condition,except their better wear resistance,the deposits can protect their counterparts against wear.The deposits plated on brass and AISI 1045 steel show good behavior against corrosion o 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide.The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.展开更多
The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amo...The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.展开更多
Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induce...Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.展开更多
Cobalt-molybdenum (Co-Mo) amorphous alloy thin films were deposited on copper substrates by the electrochemical method at pH 4.0. Among the experimental electrodeposition parameters,only the concentration ratio of m...Cobalt-molybdenum (Co-Mo) amorphous alloy thin films were deposited on copper substrates by the electrochemical method at pH 4.0. Among the experimental electrodeposition parameters,only the concentration ratio of molybdate to cobalt ions ([MoO4^2-]/[Co^2+]) was varied to analyze its influence on the mechanism of induced cobalt-molybdenum codeposition. Voltammetry was one of the main techniques,which was used to examine the voltammetric response,revealing that cobalt-molybdenum codeposition depended on the nature of the species in solution. To correlate the type of the film to the electrochemical response,various cobalt-molybdenum alloy thin films obtained from different [MoO4^2-]/[Co^2+] solutions were tested. Crack-free homogeneous films could be easily obtained from the low molybdate concentrations ([MoO4^2-]/[Co^2+]≈0.05) applying low deposition potentials. Moreover,the content of molybdenum up to 30wt% could be obtained from high molybdate concentration; in this case,the films showed cracks. The formation of these cracked films could be predicted from the observed distortions in the curves of electric current-time (j-t) deposition transients. The films with amorphous structure were obtained. The hysteresis loops suggested that the easily magnetized axis was parallel to the surface of the films. A saturation magnetization of 137 emu·g^-1 and a coercivity of 87 Oe of the film were obtained when the deposition potential was -1025mV,and [ MoO4^2-]/[Co^2+] was 0.05 in solution,which exhibited a nicer soft-magnetic response.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of depo...The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin 'crystal epitaxial growth' layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.展开更多
The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome ...The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.展开更多
The electrodeposition approach is significant in electrode fabrication for practical application.Herein,the electrodeposited amorphous NiFe hydroxide species for oxygen evolution reaction (OER) in water splitting reac...The electrodeposition approach is significant in electrode fabrication for practical application.Herein,the electrodeposited amorphous NiFe hydroxide species for oxygen evolution reaction (OER) in water splitting reaction is demonstrated by revealing the synergistic effect influenced by the support electrode of Fe and Ni foil and the contents of Fe and Ni in the electrolyte.All the electrodeposited samples have an amorphous structure and similar profiles of binding energy and chemical states for Fe and Ni as characterized by the spectroscopic techniques.While the support effect and Fe/Ni synergistic effect are indeed observed for the varied catalytic performances observed for the different electrodes;the Ni foil supported catalyst exhibits much higher performance than that of the Fe foil supported catalyst,and the different redox potentials of Ni species in the different Fe/Ni electrode resulting from the Fe–Ni synergism are observed in the cyclic voltammetry curve analysis.The surface roughness and the electrochemical surface area are also influenced by the support effect and the Fe/Ni ratio in the plating electrolyte.The optimal electrode shows a very low overpotential of~200 mV to reach 10 mA cm^(-2),and very high catalytic stability by the consecutive cyclic voltammetry measurements and 20 h stability test.Though it has the largest electrochemical surface area,the highest catalytic efficiency for these active sites is also indicated by the specific activity and turnover frequency polarization curves.The current work shows the effective experience for the electrodeposited Fe/Ni based catalysts in large-scale fabrication,which can be more practical for hydrogen generation in the alkaline water electrolysis.展开更多
To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic struct...To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic structure, surface morphology, heat treatment and corrosion resistance, of the alloy were studied by DSC, XRD, SEM and electrochemical techniques. The results showed that the structure of the alloy was greatly affected by the cooperation of boron compound. DSC experiment combined with X-ray diffractometry indicated that the obtained Ni-W-B alloy was still in amorphous structure although W content in the alloy was decreased by the addition of DMAB. After heat treatment at 400 ℃ for 1 h, the microhardness was increased from 612 to 947 kg.mm^-2 that was com- parative to Cr coating. The appearance of the as-plated coating was in f'me and slice grains and kept almost no change after heat treatment. In w=0.03 NaC1 solution the as-plated coating presented very good corrosion resistance. After the coating was heat-treated its corrosion resistance was enhanced.展开更多
Amorphous carbon nanoparticles (a-CNPs) on a multi-walled carbon nanotube (MWCNT) film, deposited on a silicon substrate, were synthesized using an electrodeposition combination from a methanol suspension of polyd...Amorphous carbon nanoparticles (a-CNPs) on a multi-walled carbon nanotube (MWCNT) film, deposited on a silicon substrate, were synthesized using an electrodeposition combination from a methanol suspension of polydiallyldimethylammonium chloride-modified MWCNTs. A low-voltage electropho- retic deposition of the MWCNTs and a high-voltage electrochemical deposition of the a-CNPs were carried out to yield homogenously attached a-CNPs on the surfaces of the MWCNTs, and form a composite film with good adhesion to the substrate. This scalable technology can produce a large area of a-CNP/MWCNT film. And the field emission investigations show that the a-CNP/MWCNT film has turn- on electric field of 3.17 V μm- 1 (at 10 μA cm-2) and threshold field of 4.62 V μm-1 (at 1 mA cm-2), which are lower than those of the MWCNT film. The a-CNP/MWCNT film can be deposited simply with large areas and may be a promising cathode material applied in field emission displays.展开更多
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects ...Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects of several factors including the potential of deposition, time of deposition and sweep rate on the Yb content in the thin films and surface morphology were studied. Experimental results indicate that the amorphous Yb-Bi thin films containing Yb 21.04%~36.36% (mass fraction) can be prepared in 0.10 mol·L^(-1) YbCl_3+0.10 mol·L^(-1) Bi(NO_3)_3+0.10 mol·L^(-1) LiCl+DMSO by controlling deposition conditions of the system. They are black, uniform, metallic luster and adhered firmly to the copper substrates. The films were characterized by X-ray energy dispersive analysis (EDS), scanning electron microcoscope (SEM) and X-ray diffraction (XRD).展开更多
Present study reports a controllable phase transformation of nickel(Ni) from amorphous to cubic crystal structures on tungsten(W) substrate by electrodeposition. X-ray powder diffraction, scanning electron microscopy,...Present study reports a controllable phase transformation of nickel(Ni) from amorphous to cubic crystal structures on tungsten(W) substrate by electrodeposition. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy were used to characterize the microstructure, micro-constituents and surface morphology of as-prepared Ni. The microstructure of Ni was strongly affected by the applied overpotential and deposition time. It is demonstrated that by controlling these two parameters either amorphous or cubic crystal structure of Ni on the W substrate could be obtained. The crystallization mechanism is discussed based on Gibbs crystal growth theory and Ostwald’s rule. It is concluded that W substrate, acting as a heat sink, can effectively promote the thermal stability of amorphous Ni, based on the data from differential scanning calorimetry and Kissinger’s model. This work contributes to the elucidation of the crystallization mechanism of Ni on W powder substrates, and proves that, better than alloying with other elements, incorporating powder substrates will significantly improve the crystallization temperature, hence the thermostability of amorphous Ni.展开更多
基金Project(04GK1007) supported by the Science and Technology Office of Hunan Province,China
文摘A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit.The corrosion properties against 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide were also discussed.The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wea than hard chromium deposits under dry sliding condition.Under oil sliding condition,except their better wear resistance,the deposits can protect their counterparts against wear.The deposits plated on brass and AISI 1045 steel show good behavior against corrosion o 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide.The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.
文摘The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.
文摘Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.
文摘Cobalt-molybdenum (Co-Mo) amorphous alloy thin films were deposited on copper substrates by the electrochemical method at pH 4.0. Among the experimental electrodeposition parameters,only the concentration ratio of molybdate to cobalt ions ([MoO4^2-]/[Co^2+]) was varied to analyze its influence on the mechanism of induced cobalt-molybdenum codeposition. Voltammetry was one of the main techniques,which was used to examine the voltammetric response,revealing that cobalt-molybdenum codeposition depended on the nature of the species in solution. To correlate the type of the film to the electrochemical response,various cobalt-molybdenum alloy thin films obtained from different [MoO4^2-]/[Co^2+] solutions were tested. Crack-free homogeneous films could be easily obtained from the low molybdate concentrations ([MoO4^2-]/[Co^2+]≈0.05) applying low deposition potentials. Moreover,the content of molybdenum up to 30wt% could be obtained from high molybdate concentration; in this case,the films showed cracks. The formation of these cracked films could be predicted from the observed distortions in the curves of electric current-time (j-t) deposition transients. The films with amorphous structure were obtained. The hysteresis loops suggested that the easily magnetized axis was parallel to the surface of the films. A saturation magnetization of 137 emu·g^-1 and a coercivity of 87 Oe of the film were obtained when the deposition potential was -1025mV,and [ MoO4^2-]/[Co^2+] was 0.05 in solution,which exhibited a nicer soft-magnetic response.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
文摘The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin 'crystal epitaxial growth' layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.
文摘The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.
基金supported by the National Natural Science Foundation of China (21972124, U2002213)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionthe financial support of national local joint engineering laboratory to functional adsorption material technology for the environmental protection, Soochow University (SDGC2124)。
文摘The electrodeposition approach is significant in electrode fabrication for practical application.Herein,the electrodeposited amorphous NiFe hydroxide species for oxygen evolution reaction (OER) in water splitting reaction is demonstrated by revealing the synergistic effect influenced by the support electrode of Fe and Ni foil and the contents of Fe and Ni in the electrolyte.All the electrodeposited samples have an amorphous structure and similar profiles of binding energy and chemical states for Fe and Ni as characterized by the spectroscopic techniques.While the support effect and Fe/Ni synergistic effect are indeed observed for the varied catalytic performances observed for the different electrodes;the Ni foil supported catalyst exhibits much higher performance than that of the Fe foil supported catalyst,and the different redox potentials of Ni species in the different Fe/Ni electrode resulting from the Fe–Ni synergism are observed in the cyclic voltammetry curve analysis.The surface roughness and the electrochemical surface area are also influenced by the support effect and the Fe/Ni ratio in the plating electrolyte.The optimal electrode shows a very low overpotential of~200 mV to reach 10 mA cm^(-2),and very high catalytic stability by the consecutive cyclic voltammetry measurements and 20 h stability test.Though it has the largest electrochemical surface area,the highest catalytic efficiency for these active sites is also indicated by the specific activity and turnover frequency polarization curves.The current work shows the effective experience for the electrodeposited Fe/Ni based catalysts in large-scale fabrication,which can be more practical for hydrogen generation in the alkaline water electrolysis.
基金Project supported by the Natural Science Foundation of Fujian Province (No. E0210005) and the National Natural Science Foundation of China (No. 29773039).
文摘To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic structure, surface morphology, heat treatment and corrosion resistance, of the alloy were studied by DSC, XRD, SEM and electrochemical techniques. The results showed that the structure of the alloy was greatly affected by the cooperation of boron compound. DSC experiment combined with X-ray diffractometry indicated that the obtained Ni-W-B alloy was still in amorphous structure although W content in the alloy was decreased by the addition of DMAB. After heat treatment at 400 ℃ for 1 h, the microhardness was increased from 612 to 947 kg.mm^-2 that was com- parative to Cr coating. The appearance of the as-plated coating was in f'me and slice grains and kept almost no change after heat treatment. In w=0.03 NaC1 solution the as-plated coating presented very good corrosion resistance. After the coating was heat-treated its corrosion resistance was enhanced.
基金support from the Top Hundred Talents Program of Chinese Academy of Sciencesthe National Nature Science Foundation of China(No.51002161)
文摘Amorphous carbon nanoparticles (a-CNPs) on a multi-walled carbon nanotube (MWCNT) film, deposited on a silicon substrate, were synthesized using an electrodeposition combination from a methanol suspension of polydiallyldimethylammonium chloride-modified MWCNTs. A low-voltage electropho- retic deposition of the MWCNTs and a high-voltage electrochemical deposition of the a-CNPs were carried out to yield homogenously attached a-CNPs on the surfaces of the MWCNTs, and form a composite film with good adhesion to the substrate. This scalable technology can produce a large area of a-CNP/MWCNT film. And the field emission investigations show that the a-CNP/MWCNT film has turn- on electric field of 3.17 V μm- 1 (at 10 μA cm-2) and threshold field of 4.62 V μm-1 (at 1 mA cm-2), which are lower than those of the MWCNT film. The a-CNP/MWCNT film can be deposited simply with large areas and may be a promising cathode material applied in field emission displays.
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
文摘Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects of several factors including the potential of deposition, time of deposition and sweep rate on the Yb content in the thin films and surface morphology were studied. Experimental results indicate that the amorphous Yb-Bi thin films containing Yb 21.04%~36.36% (mass fraction) can be prepared in 0.10 mol·L^(-1) YbCl_3+0.10 mol·L^(-1) Bi(NO_3)_3+0.10 mol·L^(-1) LiCl+DMSO by controlling deposition conditions of the system. They are black, uniform, metallic luster and adhered firmly to the copper substrates. The films were characterized by X-ray energy dispersive analysis (EDS), scanning electron microcoscope (SEM) and X-ray diffraction (XRD).
基金supported by the National Natural Science Foundation of China (Nos. 21476066,51271074 and 21705036)the Fundamental Research Funds for the Central Universities of Hunan University
文摘Present study reports a controllable phase transformation of nickel(Ni) from amorphous to cubic crystal structures on tungsten(W) substrate by electrodeposition. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy were used to characterize the microstructure, micro-constituents and surface morphology of as-prepared Ni. The microstructure of Ni was strongly affected by the applied overpotential and deposition time. It is demonstrated that by controlling these two parameters either amorphous or cubic crystal structure of Ni on the W substrate could be obtained. The crystallization mechanism is discussed based on Gibbs crystal growth theory and Ostwald’s rule. It is concluded that W substrate, acting as a heat sink, can effectively promote the thermal stability of amorphous Ni, based on the data from differential scanning calorimetry and Kissinger’s model. This work contributes to the elucidation of the crystallization mechanism of Ni on W powder substrates, and proves that, better than alloying with other elements, incorporating powder substrates will significantly improve the crystallization temperature, hence the thermostability of amorphous Ni.