Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicabilit...Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.展开更多
An energy-based controller of electric current is synthesized for the libration stabilization of an electrodynamic tether system,which consists of a relatively large main-satellite and a sub-satellite of much smaller ...An energy-based controller of electric current is synthesized for the libration stabilization of an electrodynamic tether system,which consists of a relatively large main-satellite and a sub-satellite of much smaller size.Two dynamic models with different levels of accuracy are considered in this work.First,a dumbbell model of the system is used for the controller design,which aims at damping injection on the libration motions via the real-time regulation of the electric current.Furthermore,the efficacy and performance of the proposed scheme are numerically verified by using a more complex multi-body model which accounts for not only the tether flexibility but also the attitude of the main-satellite.展开更多
Spinning electrodynamic tether systems(SEDTs)have promising potential for the active removal of space debris,the construction of observation platforms,and the formation of artificial gravity.However,owing to the survi...Spinning electrodynamic tether systems(SEDTs)have promising potential for the active removal of space debris,the construction of observation platforms,and the formation of artificial gravity.However,owing to the survivability problem of long tethers,designing collision-avoidance strategies for SEDTs with space debris is an urgent issue.This study focuses on the design of collision-avoidance strategies for SEDTs with an electrodynamic force(Ampere force).The relative distance between the debris and the SEDT is first derived,and then two collision-avoidance strategies are proposed according to the two different cases.When debris collides closer to a lighter subsatellite,a stationary avoidance strategy is proposed to change the spatial position of the subsatellite by adjusting only the angular motion of the tether,which maintains the original orbit of the SEDT.When debris collides closer to a heavier main spacecraft,a comprehensive avoidance strategy is proposed to change the spatial position of the SEDT by slightly modifying the orbital height and changing the tether angular motion simultaneously.The numerical results illustrate that the proposed strategies promptly avoid potential collisions of an SEDT with space debris without significant changes in the orbital parameters of the SEDT.展开更多
This study focuses on stabilizing the libration dynamics of an electrodynamic tether system(EDTS)using generalized torques induced by the Lorentz force.In contrast to existing numerical optimization methods,a novel an...This study focuses on stabilizing the libration dynamics of an electrodynamic tether system(EDTS)using generalized torques induced by the Lorentz force.In contrast to existing numerical optimization methods,a novel analytical feedback control law is developed to stabilize the in-plane and out-of-plane motions of a tether by modulating the electric current only.The saturation constraint on the current is accounted for by adding an auxiliary dynamic system to the EDTS.To enhance the robustness of the proposed controller,multiple perturbations of the orbital dynamics,modeling uncertainties,and external disturbances are approximated using a neural network in which the weighting matrix and approximation error are estimated simultaneously,such that these perturbations are well compensated for during the control design of the EDTS.Furthermore,a dynamically scaled generalized inverse is utilized to address the singular matrix in the control law.The closed-loop system is proven to be ultimately bounded based on Lyapunov stability theory.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed analytical control law.展开更多
The space debris occupies the orbit resources greatly,which seriously threats the safety of spacecraft for its high risks of collisions.Many theories about space debris removal have been put forward in recent years.Th...The space debris occupies the orbit resources greatly,which seriously threats the safety of spacecraft for its high risks of collisions.Many theories about space debris removal have been put forward in recent years.The Electro Dynamic Tether(EDT),which can be deployed under gravity gradient,is considered to be an effective method to remove debris in low orbit for its low power consumption.However,in order to generate sufficient Lorentz force,the EDT needs to be deployed to several kilometers,which increases the risks of tangling and the instability of the EDT system.In the deployment process,different initial in-plane/out-of-plane angles,caused by direction error at initial release or the initial selection of ejection,affect the motion of EDT system seriously.In order to solve these problems,firstly,this paper establishes the dynamic model of the EDT system.Then,based on the model,safety metrics of avoiding tangling and assessing system stability during EDT deployment stage are designed to quantitatively evaluate the EDT system security.Finally,several numerical simulations are established to determine the safety ranges of the initial in-plane/out-of-plane angles on the EDT deployment.展开更多
文摘Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.
基金Supported by the National Natural Science Foundation of China(11002068)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201233)
文摘An energy-based controller of electric current is synthesized for the libration stabilization of an electrodynamic tether system,which consists of a relatively large main-satellite and a sub-satellite of much smaller size.Two dynamic models with different levels of accuracy are considered in this work.First,a dumbbell model of the system is used for the controller design,which aims at damping injection on the libration motions via the real-time regulation of the electric current.Furthermore,the efficacy and performance of the proposed scheme are numerically verified by using a more complex multi-body model which accounts for not only the tether flexibility but also the attitude of the main-satellite.
基金the support of the National Natural Science Foundation of China(Grant No.62273277)the Key Research and Development Program of Shaanxi(Grant No.2023-GHZD-32)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.D5000220031)Russian Foundation for basic research assistance(Grant No.21-51-53002).
文摘Spinning electrodynamic tether systems(SEDTs)have promising potential for the active removal of space debris,the construction of observation platforms,and the formation of artificial gravity.However,owing to the survivability problem of long tethers,designing collision-avoidance strategies for SEDTs with space debris is an urgent issue.This study focuses on the design of collision-avoidance strategies for SEDTs with an electrodynamic force(Ampere force).The relative distance between the debris and the SEDT is first derived,and then two collision-avoidance strategies are proposed according to the two different cases.When debris collides closer to a lighter subsatellite,a stationary avoidance strategy is proposed to change the spatial position of the subsatellite by adjusting only the angular motion of the tether,which maintains the original orbit of the SEDT.When debris collides closer to a heavier main spacecraft,a comprehensive avoidance strategy is proposed to change the spatial position of the SEDT by slightly modifying the orbital height and changing the tether angular motion simultaneously.The numerical results illustrate that the proposed strategies promptly avoid potential collisions of an SEDT with space debris without significant changes in the orbital parameters of the SEDT.
基金supported by the National Natural Science Foundation of China under Grant Nos.11902145 and 12232011China Postdoctoral Science Foundation under Grant No.2021M691574Fundamental Research Funds for the Central Universities under Grant No.NS2022002.
文摘This study focuses on stabilizing the libration dynamics of an electrodynamic tether system(EDTS)using generalized torques induced by the Lorentz force.In contrast to existing numerical optimization methods,a novel analytical feedback control law is developed to stabilize the in-plane and out-of-plane motions of a tether by modulating the electric current only.The saturation constraint on the current is accounted for by adding an auxiliary dynamic system to the EDTS.To enhance the robustness of the proposed controller,multiple perturbations of the orbital dynamics,modeling uncertainties,and external disturbances are approximated using a neural network in which the weighting matrix and approximation error are estimated simultaneously,such that these perturbations are well compensated for during the control design of the EDTS.Furthermore,a dynamically scaled generalized inverse is utilized to address the singular matrix in the control law.The closed-loop system is proven to be ultimately bounded based on Lyapunov stability theory.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed analytical control law.
基金co-supported by the National Natural Science Foundation of China(Nos.51975021,U1913206)。
文摘The space debris occupies the orbit resources greatly,which seriously threats the safety of spacecraft for its high risks of collisions.Many theories about space debris removal have been put forward in recent years.The Electro Dynamic Tether(EDT),which can be deployed under gravity gradient,is considered to be an effective method to remove debris in low orbit for its low power consumption.However,in order to generate sufficient Lorentz force,the EDT needs to be deployed to several kilometers,which increases the risks of tangling and the instability of the EDT system.In the deployment process,different initial in-plane/out-of-plane angles,caused by direction error at initial release or the initial selection of ejection,affect the motion of EDT system seriously.In order to solve these problems,firstly,this paper establishes the dynamic model of the EDT system.Then,based on the model,safety metrics of avoiding tangling and assessing system stability during EDT deployment stage are designed to quantitatively evaluate the EDT system security.Finally,several numerical simulations are established to determine the safety ranges of the initial in-plane/out-of-plane angles on the EDT deployment.