The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Macrostate and microstate characteristics of interregional nonlinear interdependence of brain dynamics are investigated for Zen-meditation and normal resting EEG. Evaluation of nonlinear interdependence based on nonli...Macrostate and microstate characteristics of interregional nonlinear interdependence of brain dynamics are investigated for Zen-meditation and normal resting EEG. Evaluation of nonlinear interdependence based on nonlinear dynamic theory and phase space reconstruction is employed in the 30-channel electroencephalographic (EEG) signals to characterize the functioning interactions among different local neuronal networks. This paper presents a new scheme for exploring the microstate and macrostate of interregional brain neural network interactivity. Nonlinear interdependence quantified by similarity index is applied to the phase trajectory reconstructed from multi-channel EEG. The microstate similarity-index matrix (miSIM) is evaluated every 5 millisecond. The miSIMs are classified by K-means clustering. The cluster center corresponds to the macrostate SIM (maSIM) evaluated by conventional scheme. Zen-meditation EEG exhibits rather stationary and stronger interconnectivity among frontal midline regional neural oscillators, whereas resting EEG appears to drift away more often from the midline and extend to the inferior brain regions.展开更多
为探索神经反馈训练在提升射击表现方面的应用效果和训练过程中的无应答者特性,开展一项用于提升射击表现的神经反馈训练(neurofeedback training for sport performance,SP-NFT)实验研究,招募20名受试者,进行2周4次的“巅峰”范式SP-N...为探索神经反馈训练在提升射击表现方面的应用效果和训练过程中的无应答者特性,开展一项用于提升射击表现的神经反馈训练(neurofeedback training for sport performance,SP-NFT)实验研究,招募20名受试者,进行2周4次的“巅峰”范式SP-NFT,采集受试者前、后测隐显目标射击表现和相关脑电(electroencephalograph,EEG)数据,检验SP-NFT对射击表现的提升效果、静息态EEG特征、SP-NFT期间正常组和无应答组EEG特性变化情况。结果表明:受试者后测射击成绩显著高于前测(P<0.01),静息态theta频带功率显著降低(P<0.01);相对正常受试者,无应答者在SP-NFT期间的努力程度更高,theta频段功率和SMR功率的变化程度更低,SP-NFT能够有效提升受试者射击表现,进一步揭示了无应答者的相关生理机制。研究成果为用于提升射击表现的SP-NFT技术进一步发展提供理论支撑和实验证据。展开更多
Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer i...Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer interface(BCI)in practice.We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples.To solve this problem,we propose a multimodal domain adaptive variational autoencoder(MMDA-VAE)method,which learns shared cross-domain latent representations of the multi-modal data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common space.Through adversarial learning and cycle-consistency regularization,our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge.Extensive experiments are conducted on two public datasets,SEED and SEED-IV,and the results show the superiority of our proposed method.Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data.展开更多
Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG...Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.展开更多
Electroencephalographic(EEG)-based emotion recognition has received increasing attention in the field of human-computer interaction(HCI)recently,there however remains a number of challenges in building a generalized e...Electroencephalographic(EEG)-based emotion recognition has received increasing attention in the field of human-computer interaction(HCI)recently,there however remains a number of challenges in building a generalized emotion recognition model,one of which includes the difficulty of an EEG-based emotion classifier trained on a specific task to handle other tasks.Lit-tle attention has been paid to this issue.The current study is to determine the feasibility of coping with this challenge using feature selection.12 healthy volunteers were emotionally elicited when conducting picture induced and videoinduced tasks.Firstly,support vector machine(SVM)classifier was examined under within-task conditions(trained and tested on the same task)and cross-task conditions(trained on one task and tested on another task)for pictureinduced and videoinduced tasks.The within-task classification performed fairly well(classification accuracy:51.6%for picture task and 94.4%for video task).Cross-task classification,however,deteriorated to low levels(around 44%).Trained and tested with the most robust feature subset selected by SVM-recursive feature elimination(RFE),the performance of cross-task classifier was significantly improved to above 68%.These results suggest that cross-task emotion recognition is feasible with proper methods and bring EEG-based emotion recognition models closer to being able to discriminate emotion states for any tasks.展开更多
This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of...This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.展开更多
Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear,and widely used in the field of non-stationary signal processing.But the distribution of classic data sets seems relatively regular and simp...Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear,and widely used in the field of non-stationary signal processing.But the distribution of classic data sets seems relatively regular and simple in time series.The distribution of the electroencephalograph(EEG)signal is more randomness and non-stationarity,so online prediction of EEG signal can further verify the robustness and applicability of kernel adaptive algorithms.What’s more,the purpose of modeling and analyzing the time series of EEG signals is to discover and extract valuable information,and to reveal the internal relations of EEG signals.The time series prediction of EEG plays an important role in EEG time series analysis.In this paper,kernel RLS tracker(KRLST)is presented to online predict the EEG signals of motor imagery and compared with other 13 kernel adaptive algorithms.The experimental results show that KRLST algorithm has the best effect on the brain computer interface(BCI)dataset.展开更多
<strong>Background:</strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> The epileptic encephalo...<strong>Background:</strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> The epileptic encephalopathies collectively</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">exact an immense personal, medical, and financial toll on</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the affected children, their families, and</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the healthcare system.</span><b><span style="font-family:Verdana;"> Objective:</span></b><span style="font-family:Verdana;"> This study was aimed to delineate the clinical spectrum of patients with Epileptic encephalopathies (EEs) and classify them under various epileptic syndromes. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> This was a cross-sectional study that was carried out in the department of Neurophysiology of the National Institute of Neurosciences and Hospital, Bangladesh from July 2016 to June 2019.</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Children with recurrent seizures which w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">difficult to control and associated with developmental arrest or regression in absence of a progressive brain pathology were considered to be suffering from EE. Children under 12 years of age fulfilling the inclusion criteria were enrolled in the study. These patients were evaluated clinically and Electroencephalography (EEG) was done in all children at presentation. Based on the clinical profile and EEG findings the patients were categorized under various epileptic syndromes according to International League Against Epilepsy (ILAE) classification 2010.</span><b><span style="font-family:Verdana;"> Results:</span></b><span style="font-family:Verdana;"> A total of 1256 children under 12 years of age were referred to the Neurophysiology Department. Among them, 162</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(12.90%) fulfilled the inclusion criteria. Most of the patients were male (64.2%) and below 1 year (37.7%) of age. The majority (56.8%) were delivered at the hospital and 40.1% had a history of perinatal asphyxia. Development was age-appropriate before the onset of a seizure in 38.9% of cases. Most (53.7%) of the patients had seizure onset within 3 months of age. Categorization of Epileptic syndromes found that majority had West Syndrome (WS)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(37.65%) followed by Lennox-Gastaut syndrome (LGS) (22.22%), Otahara syndrome (11.73%), Continuous spike-and-wave during sleep (CSWS) (5.66%), Myoclonic astatic epilepsy (MAE)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(4.94%), Early myoclonic encephalopathy (EME) (3.7%), Dravet</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">syndrome (3.7%) and Landau-Kleffner syndrome (LKS) (1.23%). 9.26% of syndromes were unclassified. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> EEG was found to be a useful tool in the evaluation of Epileptic encephalopathies. The clinico-electroencephalographic features are age-related. Their recognition and appropriate management are critical.</span></span></span></span>展开更多
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
文摘Macrostate and microstate characteristics of interregional nonlinear interdependence of brain dynamics are investigated for Zen-meditation and normal resting EEG. Evaluation of nonlinear interdependence based on nonlinear dynamic theory and phase space reconstruction is employed in the 30-channel electroencephalographic (EEG) signals to characterize the functioning interactions among different local neuronal networks. This paper presents a new scheme for exploring the microstate and macrostate of interregional brain neural network interactivity. Nonlinear interdependence quantified by similarity index is applied to the phase trajectory reconstructed from multi-channel EEG. The microstate similarity-index matrix (miSIM) is evaluated every 5 millisecond. The miSIMs are classified by K-means clustering. The cluster center corresponds to the macrostate SIM (maSIM) evaluated by conventional scheme. Zen-meditation EEG exhibits rather stationary and stronger interconnectivity among frontal midline regional neural oscillators, whereas resting EEG appears to drift away more often from the midline and extend to the inferior brain regions.
文摘为探索神经反馈训练在提升射击表现方面的应用效果和训练过程中的无应答者特性,开展一项用于提升射击表现的神经反馈训练(neurofeedback training for sport performance,SP-NFT)实验研究,招募20名受试者,进行2周4次的“巅峰”范式SP-NFT,采集受试者前、后测隐显目标射击表现和相关脑电(electroencephalograph,EEG)数据,检验SP-NFT对射击表现的提升效果、静息态EEG特征、SP-NFT期间正常组和无应答组EEG特性变化情况。结果表明:受试者后测射击成绩显著高于前测(P<0.01),静息态theta频带功率显著降低(P<0.01);相对正常受试者,无应答者在SP-NFT期间的努力程度更高,theta频段功率和SMR功率的变化程度更低,SP-NFT能够有效提升受试者射击表现,进一步揭示了无应答者的相关生理机制。研究成果为用于提升射击表现的SP-NFT技术进一步发展提供理论支撑和实验证据。
基金National Natural Science Foundation of China(61976209,62020106015,U21A20388)in part by the CAS International Collaboration Key Project(173211KYSB20190024)in part by the Strategic Priority Research Program of CAS(XDB32040000)。
文摘Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer interface(BCI)in practice.We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples.To solve this problem,we propose a multimodal domain adaptive variational autoencoder(MMDA-VAE)method,which learns shared cross-domain latent representations of the multi-modal data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common space.Through adversarial learning and cycle-consistency regularization,our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge.Extensive experiments are conducted on two public datasets,SEED and SEED-IV,and the results show the superiority of our proposed method.Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data.
基金Key Program of Natural Science Foundation of Shandong Province(No.ZR2013FZ002)Program of Science and Technology of Suzhou(No.ZXY2013030)Independent Innovation Foundation of Shandong University(No.2012DX008)
文摘Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.
基金supported by National Natural Science Foundation of China(No.81222021,61172008,81171423,81127003,)National Key Technology R&D Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618).
文摘Electroencephalographic(EEG)-based emotion recognition has received increasing attention in the field of human-computer interaction(HCI)recently,there however remains a number of challenges in building a generalized emotion recognition model,one of which includes the difficulty of an EEG-based emotion classifier trained on a specific task to handle other tasks.Lit-tle attention has been paid to this issue.The current study is to determine the feasibility of coping with this challenge using feature selection.12 healthy volunteers were emotionally elicited when conducting picture induced and videoinduced tasks.Firstly,support vector machine(SVM)classifier was examined under within-task conditions(trained and tested on the same task)and cross-task conditions(trained on one task and tested on another task)for pictureinduced and videoinduced tasks.The within-task classification performed fairly well(classification accuracy:51.6%for picture task and 94.4%for video task).Cross-task classification,however,deteriorated to low levels(around 44%).Trained and tested with the most robust feature subset selected by SVM-recursive feature elimination(RFE),the performance of cross-task classifier was significantly improved to above 68%.These results suggest that cross-task emotion recognition is feasible with proper methods and bring EEG-based emotion recognition models closer to being able to discriminate emotion states for any tasks.
文摘This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.
基金the National Natural Science Foundation of China(No.61672070,62173010)the Beijing Municipal Natural Science Foundation(No.4192005,4202025)+1 种基金the Beijing Municipal Education Commission Project(No.KM201910005008,KM201911232003)the Beijing Innovation Center for Future Chips(No.KYJJ2018004).
文摘Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear,and widely used in the field of non-stationary signal processing.But the distribution of classic data sets seems relatively regular and simple in time series.The distribution of the electroencephalograph(EEG)signal is more randomness and non-stationarity,so online prediction of EEG signal can further verify the robustness and applicability of kernel adaptive algorithms.What’s more,the purpose of modeling and analyzing the time series of EEG signals is to discover and extract valuable information,and to reveal the internal relations of EEG signals.The time series prediction of EEG plays an important role in EEG time series analysis.In this paper,kernel RLS tracker(KRLST)is presented to online predict the EEG signals of motor imagery and compared with other 13 kernel adaptive algorithms.The experimental results show that KRLST algorithm has the best effect on the brain computer interface(BCI)dataset.
文摘<strong>Background:</strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> The epileptic encephalopathies collectively</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">exact an immense personal, medical, and financial toll on</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the affected children, their families, and</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the healthcare system.</span><b><span style="font-family:Verdana;"> Objective:</span></b><span style="font-family:Verdana;"> This study was aimed to delineate the clinical spectrum of patients with Epileptic encephalopathies (EEs) and classify them under various epileptic syndromes. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> This was a cross-sectional study that was carried out in the department of Neurophysiology of the National Institute of Neurosciences and Hospital, Bangladesh from July 2016 to June 2019.</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Children with recurrent seizures which w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">difficult to control and associated with developmental arrest or regression in absence of a progressive brain pathology were considered to be suffering from EE. Children under 12 years of age fulfilling the inclusion criteria were enrolled in the study. These patients were evaluated clinically and Electroencephalography (EEG) was done in all children at presentation. Based on the clinical profile and EEG findings the patients were categorized under various epileptic syndromes according to International League Against Epilepsy (ILAE) classification 2010.</span><b><span style="font-family:Verdana;"> Results:</span></b><span style="font-family:Verdana;"> A total of 1256 children under 12 years of age were referred to the Neurophysiology Department. Among them, 162</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(12.90%) fulfilled the inclusion criteria. Most of the patients were male (64.2%) and below 1 year (37.7%) of age. The majority (56.8%) were delivered at the hospital and 40.1% had a history of perinatal asphyxia. Development was age-appropriate before the onset of a seizure in 38.9% of cases. Most (53.7%) of the patients had seizure onset within 3 months of age. Categorization of Epileptic syndromes found that majority had West Syndrome (WS)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(37.65%) followed by Lennox-Gastaut syndrome (LGS) (22.22%), Otahara syndrome (11.73%), Continuous spike-and-wave during sleep (CSWS) (5.66%), Myoclonic astatic epilepsy (MAE)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(4.94%), Early myoclonic encephalopathy (EME) (3.7%), Dravet</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">syndrome (3.7%) and Landau-Kleffner syndrome (LKS) (1.23%). 9.26% of syndromes were unclassified. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> EEG was found to be a useful tool in the evaluation of Epileptic encephalopathies. The clinico-electroencephalographic features are age-related. Their recognition and appropriate management are critical.</span></span></span></span>