Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG...Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.展开更多
Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the ...Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.展开更多
基金Key Program of Natural Science Foundation of Shandong Province(No.ZR2013FZ002)Program of Science and Technology of Suzhou(No.ZXY2013030)Independent Innovation Foundation of Shandong University(No.2012DX008)
文摘Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.
文摘Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.