Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed micr...Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed microstructures of electroformed nickel liner of shaped charge were observed by optical metallography(OM),scanning electron microscopy(SEM) and transmission electron microscopy(TEM) and the orientation distribution of the grains was analyzed by electron backscattering pattern(EBSP) technique.Both melting phenomenon in the jet fragment and recovery and recrystallization in the slug after ultra-high-strain-rate deformation were observed.The research evidence shows that dynamic recovery and recrystallization play an important role in ultra-high-strain-rate deformation for electroformed nickel liner of shaped charge with nano-sized grain.展开更多
Nickel shaped-charge liners with nano-sized grains were prepared by the electroforming technique, and the deformation at ultrahigh strain rate was performed by explosive detonation. The as-formed and post-deformed mic...Nickel shaped-charge liners with nano-sized grains were prepared by the electroforming technique, and the deformation at ultrahigh strain rate was performed by explosive detonation. The as-formed and post-deformed microstructures of electroformed nickel shaped-charge liners with nano-sized grains were observed by means of transmission electron microscopy, and the orientation distribution of the grains was analyzed by the electron backscattering pattern (EBSP) technique. The melting phenomenon in the jet fragment and the recovery and recrystallization in the slug after plastic deformation at ultrahigh-strain rate were observed in the ultrafine-grained nickel shaped-charge liners. The research evidence shows that dynamic recovery and recrystallization play an important role in plastic deformation at ultrahigh strain rate.展开更多
This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locall...This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locally. A Plaster of Paris electroforming mandrel in the shape of a water bottle was produced and made electrically conducting with a layer of copper conducting paint. Considerations for electroform removal were made by applying a thin, chloroform-dissolvable epoxy layer beneath the conducting copper paint. Uniformity of deposition on the mandrel was accomplished with the construction of a special deposition bath with multiple copper anodes around its perimeter. The electroforming was done in the galvanostatic electro deposition mode for about 240 hrs in a 1 M Cu2SO4 bath with the deposition of elemental copper on the mandrel. Incidences of rising bath pH were mediated with concentrated H2SO4. A free-standing electroform representing the mould cavity was formed in the deposition. The product so formed was a reproduction of the net-shape of the mandrel exhibiting smooth surface finish. The electroforming was cast with an aluminum backing layer to complete its transformation into a split mould. The finished mould was comparable in appearance to the imported moulds in terms of appearance and reproduction of intricate surface patterns. The simplicity and low cost of this method significantly reduced the requirements for expensive instrumentation and highly skilled labour for mould production.展开更多
A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles a...A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles as a real-time polishing to the cathode.When cathode moves,hard particles polish its surface and provide the nickel non-rotating parts with near-mirror finishing.Morphology,microstructure,surface roughness and micro hardness of deposits fabricated by novel method were studied in contrast with the sample produced by traditional electroforming methods.Theoretical analysis and experimental results showed that the novel technique could effectively remove the hydrogen bubbles and nodules,disturb the crystal nucleation,and refine the grains of layer.The mechanical properties were significantly improved over traditional method.The micro-hardness of the layer was in a uniform distribution ranging from 345 HV to 360 HV.It was confirmed that this technique had practical significance to non-rotating thin-walled parts.展开更多
The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the ...The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the orientation distribution of the grains in the recovered jet was examined by electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis reveals that the fibrous texture observed in the as-electroformed copper liners disappeared after explosive detonation deformation. OM observation shows that the microstructure evolves system- atically from the jet center to its perimeter during cooling from high temperatures after explosive detonation deformation. This microstructural characteristic is similar to that of solidification, i.e. there exist equiaxed grains in the center of the jet and significant columnar grains around the equiaxed grains. The result reveals that there is melting-related phenomenon in the jet center. Corresponding microhardness variations from the jet center to its perimeter is also determined. All the phenomena can be explained by a strong gradient of temperature across the section of the jet during plastic deformation at high-strain-rate.展开更多
The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) met...The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.展开更多
Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) t...Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) technique and high resolution electron microscopy (HREM) have been employed to investigate the crystal defects formed in electroformed nickel liners of shaped charges. The result shows that (100) fiber texture which is parallel to the grown direction exists in the electroformed nickel prepared by using direct current electroforming without any additives, and (111) fiber texture exists in the electroformed nickel prepared by using direct current electroforming with additives. The deposits prepared by using direct current electroforming possess columnar grain with an average grain size of 30 μm in width and 170 μm in length. The deposits prepared with additives are composed of a colony structures with grain size of about 29 nm, and a lot of crystal defects such as twins, antiphase boundaries and stacking faults have been observed in the electroformed nickel.展开更多
The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a sc...The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.展开更多
The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were inve...The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.展开更多
The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the elec...The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the electroformed copper liners of shaped charges wasexamined by the electron backscattering Kikuchi pattern (EBSP) technique. TEM observations haverevealed that these electroformed copper liners of shaped charges have the grain size of about 1-3mu m and the grains have a preferential orientation distribution along the growth direction. EBSPanalysis has demonstrated that the as-formed copper liners of shaped charges exhibit amicro-texture, i.e. one type of fiber texture, and the preferred growth direction is normal to thesurface of the liners.展开更多
Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a...Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process.展开更多
In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different...In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and transla- tion speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.展开更多
The Ni samples were electroformed from additive-free(AF) and saccharin-containing(SC) sulfamate solutions, respectively. In situ backscattered electron(BSE) imaging, electron backscatter diffraction(EBSD), and electro...The Ni samples were electroformed from additive-free(AF) and saccharin-containing(SC) sulfamate solutions, respectively. In situ backscattered electron(BSE) imaging, electron backscatter diffraction(EBSD), and electron-probe microanalysis(EPMA) were used to investigate the effect of annealing on the deformation behaviors of the AF and SC samples. The results indicate that columnar grains of the as-deposited AF sample had an approximated average width of 3 μm and an approximated aspect ratio of 8. The average width of columnar grains of the as-deposited SC sample was reduced to approximately 400 nm by the addition of saccharin to the electrolyte. A few very-large grains distributed in the matrix of the SC sample after annealing. No direct evidence indicated that S segregated at the grain boundaries before or after annealing. The average value of the total elongations of the SC samples decreased from 16% to 6% after annealing, whereas that of the AF samples increased from 18% to 50%. The dislocation recovery in grain-boundary areas of the annealed AF sample was reduced, which contributed to the appearance of microvoids at the triple junctions. The incompatibility deformation between very-large grains and fine grains contributed to the brittle fracture behavior of the annealed SC Ni.展开更多
Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were stud...Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were studied by contrasting with electroforming using direct current. The results show that the surface of the deposits obtained by pulse electroforming displays more obvious abrasion marks and (200) preferred orientation to that electroformed using direct current at the same average current density. Besides, the deposits represent higher microhardness and better high-temperature corrosion resistance. It is also found that the orientation index of plane (200) and microhardness significantly increase with the reduction of duty cycle of pulse current. During pulse electroforming, the longer off-time and higher peak current density are helpful to strengthening the hard particles’ polishing effect on the surface of deposits and perturbing effect on crystal nucleation of atoms.展开更多
The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallograp...The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.展开更多
The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from...The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.展开更多
The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of...The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of the grains in the recovered slug wasexamined by the electron backscattering Kikuchipattern(EBSP)technique. EBSP analysis illustrated that unlike theas-formed electro- formed copper liners of shaped charges the grainorientations in the recovered slug are distributed along randomly allthe directions after undergoing heavily strain deformation athigh-strain rate. Optical microscopy shows a typicalrecrystallization structure, and TEM exam- ination revealsdislocation cells existed in the thin foil specimen. These resultsindicate that dynamic recovery and recrystallization occur duringthis plastic deformation process, and the associated deformationtemperature is considered to be higher than 0.6 times the meltingpoint of copper.展开更多
A cathode mandrel with translational and rotational motion, which was supposed to obtain uniform friction effect on surface, was employed in abrasive-assisted electroforming for revolving parts with complex profile. T...A cathode mandrel with translational and rotational motion, which was supposed to obtain uniform friction effect on surface, was employed in abrasive-assisted electroforming for revolving parts with complex profile. The effects of current density, translational speed and rotational speed on the deposit properties were studied by orthogonal test. The tensile strength, elongation and micro hardness value were measured to find out how the factors affected the properties. The optimized results show that changes of current density affect the tensile strength of nickel layer most, while translational speed has the most remarkable influences on both elongation and micro hardness. The low rotational speed affects the properties least. In this experiment, a smooth nickel layer with tensile strength 581 MPa, elongation 17% and micro hardness 248HV is obtained by the orthogonal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.展开更多
Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The m...Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The microstructure of the electroformed copper layer is observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength is evaluated with a tensile tester. It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains. The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer, while the fracture strain remains constant. In addition, the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.展开更多
Giant liposome is an important lipid structure widely used in biological and medical fields. In its main preparation method, electroformation, many influencing factors must be optimized for good effect. How to collect...Giant liposome is an important lipid structure widely used in biological and medical fields. In its main preparation method, electroformation, many influencing factors must be optimized for good effect. How to collect the desired giant liposomes is another major issue. In this work, a microchip with a reactor chamber array was used to study the influences of multiple parameters, and a suitable condition could be achieved rapidly and efficiently. A tailor-made collection chamber was also integrated on the chip. Based on the multifactor and multilevel orthogonal experiment, optimal conditions of the lipid solution, buffer solution, and electric signal were achieved with high efficiency. More than one thousand giant liposomes could be formed in each microscale reactor chamber, and most of them were unilamellar. The on-chip collection ratio of giant liposome carriers could also approximate to 40%.展开更多
基金Project(50671012) supported by the National Natural Science Foundation of China
文摘Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed microstructures of electroformed nickel liner of shaped charge were observed by optical metallography(OM),scanning electron microscopy(SEM) and transmission electron microscopy(TEM) and the orientation distribution of the grains was analyzed by electron backscattering pattern(EBSP) technique.Both melting phenomenon in the jet fragment and recovery and recrystallization in the slug after ultra-high-strain-rate deformation were observed.The research evidence shows that dynamic recovery and recrystallization play an important role in ultra-high-strain-rate deformation for electroformed nickel liner of shaped charge with nano-sized grain.
基金supported by the National Natural Science Foundation of China (No.50671012)
文摘Nickel shaped-charge liners with nano-sized grains were prepared by the electroforming technique, and the deformation at ultrahigh strain rate was performed by explosive detonation. The as-formed and post-deformed microstructures of electroformed nickel shaped-charge liners with nano-sized grains were observed by means of transmission electron microscopy, and the orientation distribution of the grains was analyzed by the electron backscattering pattern (EBSP) technique. The melting phenomenon in the jet fragment and the recovery and recrystallization in the slug after plastic deformation at ultrahigh-strain rate were observed in the ultrafine-grained nickel shaped-charge liners. The research evidence shows that dynamic recovery and recrystallization play an important role in plastic deformation at ultrahigh strain rate.
文摘This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locally. A Plaster of Paris electroforming mandrel in the shape of a water bottle was produced and made electrically conducting with a layer of copper conducting paint. Considerations for electroform removal were made by applying a thin, chloroform-dissolvable epoxy layer beneath the conducting copper paint. Uniformity of deposition on the mandrel was accomplished with the construction of a special deposition bath with multiple copper anodes around its perimeter. The electroforming was done in the galvanostatic electro deposition mode for about 240 hrs in a 1 M Cu2SO4 bath with the deposition of elemental copper on the mandrel. Incidences of rising bath pH were mediated with concentrated H2SO4. A free-standing electroform representing the mould cavity was formed in the deposition. The product so formed was a reproduction of the net-shape of the mandrel exhibiting smooth surface finish. The electroforming was cast with an aluminum backing layer to complete its transformation into a split mould. The finished mould was comparable in appearance to the imported moulds in terms of appearance and reproduction of intricate surface patterns. The simplicity and low cost of this method significantly reduced the requirements for expensive instrumentation and highly skilled labour for mould production.
基金Funded partly by the National Natural Science Foundation of China(No.50975143)the Aviation Science Funds,China (No.2009ZE52048)
文摘A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles as a real-time polishing to the cathode.When cathode moves,hard particles polish its surface and provide the nickel non-rotating parts with near-mirror finishing.Morphology,microstructure,surface roughness and micro hardness of deposits fabricated by novel method were studied in contrast with the sample produced by traditional electroforming methods.Theoretical analysis and experimental results showed that the novel technique could effectively remove the hydrogen bubbles and nodules,disturb the crystal nucleation,and refine the grains of layer.The mechanical properties were significantly improved over traditional method.The micro-hardness of the layer was in a uniform distribution ranging from 345 HV to 360 HV.It was confirmed that this technique had practical significance to non-rotating thin-walled parts.
文摘The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the orientation distribution of the grains in the recovered jet was examined by electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis reveals that the fibrous texture observed in the as-electroformed copper liners disappeared after explosive detonation deformation. OM observation shows that the microstructure evolves system- atically from the jet center to its perimeter during cooling from high temperatures after explosive detonation deformation. This microstructural characteristic is similar to that of solidification, i.e. there exist equiaxed grains in the center of the jet and significant columnar grains around the equiaxed grains. The result reveals that there is melting-related phenomenon in the jet center. Corresponding microhardness variations from the jet center to its perimeter is also determined. All the phenomena can be explained by a strong gradient of temperature across the section of the jet during plastic deformation at high-strain-rate.
基金financially supported by the National Natural Science Foundation of China (No.59971008)
文摘The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.
基金supported in part by National Natural Science Foundation of Chinaunder Grant No.50671012
文摘Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) technique and high resolution electron microscopy (HREM) have been employed to investigate the crystal defects formed in electroformed nickel liners of shaped charges. The result shows that (100) fiber texture which is parallel to the grown direction exists in the electroformed nickel prepared by using direct current electroforming without any additives, and (111) fiber texture exists in the electroformed nickel prepared by using direct current electroforming with additives. The deposits prepared by using direct current electroforming possess columnar grain with an average grain size of 30 μm in width and 170 μm in length. The deposits prepared with additives are composed of a colony structures with grain size of about 29 nm, and a lot of crystal defects such as twins, antiphase boundaries and stacking faults have been observed in the electroformed nickel.
文摘The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.
文摘The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.
基金the National Natural Science Foundation of China (No. 59971008)
文摘The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the electroformed copper liners of shaped charges wasexamined by the electron backscattering Kikuchi pattern (EBSP) technique. TEM observations haverevealed that these electroformed copper liners of shaped charges have the grain size of about 1-3mu m and the grains have a preferential orientation distribution along the growth direction. EBSPanalysis has demonstrated that the as-formed copper liners of shaped charges exhibit amicro-texture, i.e. one type of fiber texture, and the preferred growth direction is normal to thesurface of the liners.
基金Projects(51305465,91123012)supported by the National Natural Science Foundation of China
文摘Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process.
基金Supported by National Natural Science Foundation of China(Grant No.51475239)Program for New Century Excellent Talents in University of China(Grand No.NCET-10-0074)
文摘In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and transla- tion speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.
基金financially supported by the China Scholarship Council(No.201606460015)the support of the H.Nakano laboratory of Kyushu University for the study
文摘The Ni samples were electroformed from additive-free(AF) and saccharin-containing(SC) sulfamate solutions, respectively. In situ backscattered electron(BSE) imaging, electron backscatter diffraction(EBSD), and electron-probe microanalysis(EPMA) were used to investigate the effect of annealing on the deformation behaviors of the AF and SC samples. The results indicate that columnar grains of the as-deposited AF sample had an approximated average width of 3 μm and an approximated aspect ratio of 8. The average width of columnar grains of the as-deposited SC sample was reduced to approximately 400 nm by the addition of saccharin to the electrolyte. A few very-large grains distributed in the matrix of the SC sample after annealing. No direct evidence indicated that S segregated at the grain boundaries before or after annealing. The average value of the total elongations of the SC samples decreased from 16% to 6% after annealing, whereas that of the AF samples increased from 18% to 50%. The dislocation recovery in grain-boundary areas of the annealed AF sample was reduced, which contributed to the appearance of microvoids at the triple junctions. The incompatibility deformation between very-large grains and fine grains contributed to the brittle fracture behavior of the annealed SC Ni.
文摘Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were studied by contrasting with electroforming using direct current. The results show that the surface of the deposits obtained by pulse electroforming displays more obvious abrasion marks and (200) preferred orientation to that electroformed using direct current at the same average current density. Besides, the deposits represent higher microhardness and better high-temperature corrosion resistance. It is also found that the orientation index of plane (200) and microhardness significantly increase with the reduction of duty cycle of pulse current. During pulse electroforming, the longer off-time and higher peak current density are helpful to strengthening the hard particles’ polishing effect on the surface of deposits and perturbing effect on crystal nucleation of atoms.
文摘The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.
文摘The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.
基金financially supported by the National Natural Science Foundation of China (No.59971008).
文摘The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of the grains in the recovered slug wasexamined by the electron backscattering Kikuchipattern(EBSP)technique. EBSP analysis illustrated that unlike theas-formed electro- formed copper liners of shaped charges the grainorientations in the recovered slug are distributed along randomly allthe directions after undergoing heavily strain deformation athigh-strain rate. Optical microscopy shows a typicalrecrystallization structure, and TEM exam- ination revealsdislocation cells existed in the thin foil specimen. These resultsindicate that dynamic recovery and recrystallization occur duringthis plastic deformation process, and the associated deformationtemperature is considered to be higher than 0.6 times the meltingpoint of copper.
基金financial support from the Program for New Century Excellent Talents in University of China (No. NCET-10-0074)
文摘A cathode mandrel with translational and rotational motion, which was supposed to obtain uniform friction effect on surface, was employed in abrasive-assisted electroforming for revolving parts with complex profile. The effects of current density, translational speed and rotational speed on the deposit properties were studied by orthogonal test. The tensile strength, elongation and micro hardness value were measured to find out how the factors affected the properties. The optimized results show that changes of current density affect the tensile strength of nickel layer most, while translational speed has the most remarkable influences on both elongation and micro hardness. The low rotational speed affects the properties least. In this experiment, a smooth nickel layer with tensile strength 581 MPa, elongation 17% and micro hardness 248HV is obtained by the orthogonal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
基金National Natural Science Foundation of China (50771010)
文摘Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The microstructure of the electroformed copper layer is observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength is evaluated with a tensile tester. It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains. The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer, while the fracture strain remains constant. In addition, the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.
基金supported by the National Natural Science Foundation of China(Nos. 81501617,81871450,21827812)Science and Technology Planning Project of Yuzhong District, Chongqing, China(No. 20170122)+1 种基金the Program of International S&T Cooperation (No. 2014DFG31380)the Foundation for Higher Education Young Key Teacher of Chongqing, China
文摘Giant liposome is an important lipid structure widely used in biological and medical fields. In its main preparation method, electroformation, many influencing factors must be optimized for good effect. How to collect the desired giant liposomes is another major issue. In this work, a microchip with a reactor chamber array was used to study the influences of multiple parameters, and a suitable condition could be achieved rapidly and efficiently. A tailor-made collection chamber was also integrated on the chip. Based on the multifactor and multilevel orthogonal experiment, optimal conditions of the lipid solution, buffer solution, and electric signal were achieved with high efficiency. More than one thousand giant liposomes could be formed in each microscale reactor chamber, and most of them were unilamellar. The on-chip collection ratio of giant liposome carriers could also approximate to 40%.