期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrokinetic energy conversion of electro-magneto-hydro-dynamic nanofluids through a microannulus under the time-periodic excitation 被引量:1
1
作者 Guangpu ZHAO Jiali ZHANG +1 位作者 Zhiqiang WANG Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期1029-1046,共18页
In this work,the effects of externally applied axial pressure gradients and transverse magnetic fields on the electrokinetic energy conversion(EKEC)efficiency and the streaming potential of nanofluids through a microa... In this work,the effects of externally applied axial pressure gradients and transverse magnetic fields on the electrokinetic energy conversion(EKEC)efficiency and the streaming potential of nanofluids through a microannulus are studied.The analytical solution for electro-magneto-hydro-dynamic(EMHD)flow is obtained under the condition of the Debye-Huuckel linearization.Especially,Green’s function method is used to obtain the analytical solutions of the velocity field.The result shows that the velocity distribution is characterized by the dimensionless frequency?,the Hartmann number Ha,the volume fraction of the nanoparticlesφ,the geometric radius ratio a,and the wallζpotential ratio b.Moreover,the effects of three kinds of periodic excitations are compared and discussed.The results also show that the periodic excitation of the square waveform is more effective in increasing the streaming potential and the EKEC efficiency.It is worth noting that adjusting the wallζpotential ratio and the geometric radius ratio can affect the streaming potential and the EKEC efficiency. 展开更多
关键词 electrokinetic energy conversion(EKEC)efficiency NANOFLUID streaming potential magnetic field time-periodic excitation
下载PDF
Electrokinetic flow and energy conversion in a curved microtube
2
作者 Zhaodong DING Kai TIAN Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1289-1306,共18页
Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under th... Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency. 展开更多
关键词 electrokinetic flow streaming potential electrokinetic energy conversion(EKEC) perturbation analysis method curved microchannel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部