Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiati...Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.展开更多
The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and ...The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.展开更多
A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic p...A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.展开更多
Three kinds of Ni-P electroless coatings were prepared in nickel sulphate solution at different pH values of 4.5, 5.5 and 6.5 with the purpose of ascertaining the influence of pH value on microstructure, internal stre...Three kinds of Ni-P electroless coatings were prepared in nickel sulphate solution at different pH values of 4.5, 5.5 and 6.5 with the purpose of ascertaining the influence of pH value on microstructure, internal stress statue and thermal stability of the coatings. Laser curvature (LC) method was used to measure the residual stress level in the coatings. Scanning electronic microscopy (SEM) and transmission electronic microscopy with energy dispersive spectrum (TEM/EDS) were used to examine the surface morphology and internal phase structure of the coatings, respectively. Differential scanning calorimeter (DSC) was used to analyze the phase transformation and thermal stability of the coatings at high temperature. Results showed the NiP coating prepared at pH 5.5 with nanocrystal mixed in amorphous structure had the worst thermal stability. The relatively higher stability of Ni-P coatings prepared at pH 4.5 and 6.5 was ascribed to the lower tensile stress level and much finer grain size, respectively. Besides, inverse Hall-Petch effect of annealing strengthening might also contribute to the integrity of NiP coating prepared at pH 6.5. C 2009 Hui Ming Jin. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the e...A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the electroless Ni(P)layer results in different types of microstructures of SnAgNi/Ni(P)solder joint.The morphology of Ni3Sn4 intermetallic compounds(IMCs)formed between the solder and Ni(10%P)layer is observed to be needle-like and this shape provides high speed diffusion channels for Ni to diffuse into solder that culminates in high growth rate of Ni3Sn4.The diffusion of Ni into solder furthermore results in the formation of Kirkendall voids at the interface of Ni(P)layer and SiCp/Al composites substrate.It is observed that solder reliability is degraded by the formation of Ni2SnP,P rich Ni layer and Kirkendall voids.The compact Ni3Sn4 IMC layer in Ni(5%P)solder joint prevents Ni element from diffusing into solder,resulting in a low growth rate of Ni3Sn4 layer.Meanwhile,the formation of Ni2SnP that significantly affects the reliability of solder joints is suppressed by the low P content Ni(5%P)layer.Thus,shear strength of Ni(5%P) solder joint is concluded to be higher than that of Ni(10%P)solder joint.Growth of Ni3Sn4 IMC layer and formation of crack are accounted to be the major sources of the failure of Ni(5%P)solder joint.展开更多
A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposite...A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.展开更多
In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/el...In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.展开更多
The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. T...The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.展开更多
Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-r...Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating. Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature. The coating's corrosive behavior in 3%NaCl + 5%H2SO4 solution was also investigated. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. In high-temperature condition, Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures, while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anti-corrosion property was better in the CeO2-containing coating, and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.展开更多
The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,struc...The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,structure and micro-hardness. The morphology and structure of the Ni-P-SiC composite coatings were studied by scanning electron microscopy(SEM) and X-ray diffractometry(XRD),respectively. A great deal of particles incorporation and uniform distribution were found in Ni-P-SiC composite coatings. XRD results show a broad peak of nickel and low intensity SiC peaks present on as-deposited condition. Micro-hardness of as-deposited Ni-P-SiC composite coatings is improved greatly,and the best micro-hardness is obtained after heat treatment in a high vacuum at 400 ℃ .展开更多
文摘Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.
文摘The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.
基金Project(2006031117-04) supported by Tackling Key Science and Technology of Shanxi Province, ChinaProject(07010763) supported by Academic Innovation of Taiyuan City, China
文摘A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.
文摘Three kinds of Ni-P electroless coatings were prepared in nickel sulphate solution at different pH values of 4.5, 5.5 and 6.5 with the purpose of ascertaining the influence of pH value on microstructure, internal stress statue and thermal stability of the coatings. Laser curvature (LC) method was used to measure the residual stress level in the coatings. Scanning electronic microscopy (SEM) and transmission electronic microscopy with energy dispersive spectrum (TEM/EDS) were used to examine the surface morphology and internal phase structure of the coatings, respectively. Differential scanning calorimeter (DSC) was used to analyze the phase transformation and thermal stability of the coatings at high temperature. Results showed the NiP coating prepared at pH 5.5 with nanocrystal mixed in amorphous structure had the worst thermal stability. The relatively higher stability of Ni-P coatings prepared at pH 4.5 and 6.5 was ascribed to the lower tensile stress level and much finer grain size, respectively. Besides, inverse Hall-Petch effect of annealing strengthening might also contribute to the integrity of NiP coating prepared at pH 6.5. C 2009 Hui Ming Jin. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Projects(50274014, 50774005) supported by the National Natural Science Foundation of ChinaProject(2006CB605207) supported by the National Basic Research Program of China+1 种基金Project(2006AA03Z557) supported by the National High-tech Research and Development of ChinaProject(I2P407) supported by MOE Program for Changjiang Scholars
文摘A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the electroless Ni(P)layer results in different types of microstructures of SnAgNi/Ni(P)solder joint.The morphology of Ni3Sn4 intermetallic compounds(IMCs)formed between the solder and Ni(10%P)layer is observed to be needle-like and this shape provides high speed diffusion channels for Ni to diffuse into solder that culminates in high growth rate of Ni3Sn4.The diffusion of Ni into solder furthermore results in the formation of Kirkendall voids at the interface of Ni(P)layer and SiCp/Al composites substrate.It is observed that solder reliability is degraded by the formation of Ni2SnP,P rich Ni layer and Kirkendall voids.The compact Ni3Sn4 IMC layer in Ni(5%P)solder joint prevents Ni element from diffusing into solder,resulting in a low growth rate of Ni3Sn4 layer.Meanwhile,the formation of Ni2SnP that significantly affects the reliability of solder joints is suppressed by the low P content Ni(5%P)layer.Thus,shear strength of Ni(5%P) solder joint is concluded to be higher than that of Ni(10%P)solder joint.Growth of Ni3Sn4 IMC layer and formation of crack are accounted to be the major sources of the failure of Ni(5%P)solder joint.
基金supported by the National Natural Science Foundation of China (Grant No.50671006)the National R&D Infrastructure and Facility Development Program of China (2005DKA10400-Z1)
文摘A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.
基金Funded by the China Postdoctoral Science Foundation(No.2012M520604)the Natural Science Foundation for Young Scientists of Shanxi Province(No.2013021013-2)
文摘In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.
文摘The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.
基金supported by National Natural Science Foundation of China (No.29233011)Natural Science Foundation of Jiangsu Province (No.07KJD430246).
文摘Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating. Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature. The coating's corrosive behavior in 3%NaCl + 5%H2SO4 solution was also investigated. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. In high-temperature condition, Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures, while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anti-corrosion property was better in the CeO2-containing coating, and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.
基金Projects(05B008) supported by Scientific Research Fund of Hunan Provincial Education Departmentproject(104014) supported by Fok Ying Tong Education Foundation of Ministry of Education
文摘The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,structure and micro-hardness. The morphology and structure of the Ni-P-SiC composite coatings were studied by scanning electron microscopy(SEM) and X-ray diffractometry(XRD),respectively. A great deal of particles incorporation and uniform distribution were found in Ni-P-SiC composite coatings. XRD results show a broad peak of nickel and low intensity SiC peaks present on as-deposited condition. Micro-hardness of as-deposited Ni-P-SiC composite coatings is improved greatly,and the best micro-hardness is obtained after heat treatment in a high vacuum at 400 ℃ .