All the variables that may affect the Ni-Cu-P alloy deposition rate on polyester fabric were studied , and the activation energy and the reaction orders were determined. The deposition rate equation was also derived.
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were...A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.展开更多
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p...Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.展开更多
Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiati...Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.展开更多
研究了粘结NdFeB永磁体化学镀Ni Cu P合金防护层的工艺过程。研究表明:粘结磁体经碱性去油、缓蚀酸洗、镀前隔离与活化处理后再进行化学镀Ni Cu P,可获得镀层光亮平整,结合力好,孔隙率为每平方厘米0.5个,腐蚀速率为0.07mg·cm-2...研究了粘结NdFeB永磁体化学镀Ni Cu P合金防护层的工艺过程。研究表明:粘结磁体经碱性去油、缓蚀酸洗、镀前隔离与活化处理后再进行化学镀Ni Cu P,可获得镀层光亮平整,结合力好,孔隙率为每平方厘米0.5个,腐蚀速率为0.07mg·cm-2·h-1的耐蚀性镀层,该镀层对磁体磁性能无不良影响。展开更多
研究了化学镀Ni Cu P合金镀液组成及操作条件对镀层厚度及硬度的影响。筛选出了体系的最佳工艺条件,获得了82.391%Ni 10.298%P 5.297%Cu的合金镀层,其硬度在450~500HV之间。X射线衍射表明:Ni Cu P合金镀层在镀态下为非晶态结构,但镀... 研究了化学镀Ni Cu P合金镀液组成及操作条件对镀层厚度及硬度的影响。筛选出了体系的最佳工艺条件,获得了82.391%Ni 10.298%P 5.297%Cu的合金镀层,其硬度在450~500HV之间。X射线衍射表明:Ni Cu P合金镀层在镀态下为非晶态结构,但镀层经400℃和600℃热处理后,其结晶区域有Ni3P、Cu3P等特征的衍射峰出现,表明镀层为晶态结构。此外,研究表明:镀层厚度随硫酸镍浓度、次亚磷酸钠浓度、镀液温度及pH值的升高而增加,随硫酸铜浓度、络合剂浓度的升高而降低。展开更多
文摘All the variables that may affect the Ni-Cu-P alloy deposition rate on polyester fabric were studied , and the activation energy and the reaction orders were determined. The deposition rate equation was also derived.
基金financially supported by the National Natural Science Foundation of China (No.52271073)。
文摘A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
基金Supported by Sichuan Provincial Science and Technology Program of China(Grant No.2018JY0245)National Natural Science Foundation of China(Grant No.51975492)Natural Science Foundation of Southwest University of Science and Technology of China(Grant No.19xz7163).
文摘Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.
文摘Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.
文摘研究了粘结NdFeB永磁体化学镀Ni Cu P合金防护层的工艺过程。研究表明:粘结磁体经碱性去油、缓蚀酸洗、镀前隔离与活化处理后再进行化学镀Ni Cu P,可获得镀层光亮平整,结合力好,孔隙率为每平方厘米0.5个,腐蚀速率为0.07mg·cm-2·h-1的耐蚀性镀层,该镀层对磁体磁性能无不良影响。
文摘 研究了化学镀Ni Cu P合金镀液组成及操作条件对镀层厚度及硬度的影响。筛选出了体系的最佳工艺条件,获得了82.391%Ni 10.298%P 5.297%Cu的合金镀层,其硬度在450~500HV之间。X射线衍射表明:Ni Cu P合金镀层在镀态下为非晶态结构,但镀层经400℃和600℃热处理后,其结晶区域有Ni3P、Cu3P等特征的衍射峰出现,表明镀层为晶态结构。此外,研究表明:镀层厚度随硫酸镍浓度、次亚磷酸钠浓度、镀液温度及pH值的升高而增加,随硫酸铜浓度、络合剂浓度的升高而降低。