Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulf...Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.展开更多
基金supported by Universiti Sains Malaysia under the Research University Grant (RU. Grant No.1001/PKIMIA/811006)
文摘Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.