The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-...The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.展开更多
Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were mea...Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.展开更多
Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material w...Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material with electrical and effective electromagnetic shielding properties. Ni-P alloy layer was obtained on wood surface. The surface feature of plated wood veneer was observed by SEM and the surface composition and microstructure of the layer under different conditions were investigated by EDS and XRD respectively. Meanwhile, the relevant surface resistivity and electromagnetic shielding effectiveness were measured. Correlations of the phosphorous content in the layer to the structure of Ni-P alloy, electro-conductivity and electromagnetic shielding of plated veneers were discussed. SEM photos showed that the surface of electroless nickel plated veneers were covered with Ni-P alloy layer entirely, which made wood veneers more like metal. At the same time, the results showed that with the decreasing of the phosphorous content in the layer, the microstructure of Ni-P alloy layer transformed to be microcrystalline and electro-conductivity and electromagnetic shielding effectiveness were improved. When the phosphorous content was less than 2.37wt pct in the layer, the microstructure of Ni-P alloy layer was microcrystalline structure and its sur- face resistivity and electromagnetic shielding effectiveness were nearly 0.5Ω/□ and 55-60dB respectively.展开更多
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of po...In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.展开更多
The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effect...The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO_4/ZnSO_4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in ~NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.展开更多
Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts usi...Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts using electrolessly-plated Ni-P/CNT. These catalysts were extensively characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Catalytic activities towards methanol oxidation and hydrogen evolution reactions were evaluated and benchmarked with a commercial Pt/C catalyst. Uniform dispersion of Pt on Ni-P particles led to high Pt utilization, and the electrochemical surface area of Pt^Ni-P/CNT with 12.1% Pt loading was found to be 126 m2 gà1, higher than that of a commercial Pt/C(77.9 m2 gà1). The Tafel slopes for the Pt^Ni-P/CNT catalysts were also found to be smaller than that of Pt/C indicating faster kinetics for hydrogen evolution reaction.展开更多
The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating wer...The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crysta...Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.展开更多
Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transm...Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and differential scanning calorimeter (DSC) were used to examine surface morphology and microstructure of the coating. Aqueous corrosion was done in 3%NaCl+5%H2SO4 solution and high temperature oxidation was done at 750 ℃ in air. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. At high temperature, Ni3P precipitation and Ni crystallization took place in both coatings at different temperatures. Aqueous corrosion property and high temperature oxidation property of the composite coating were remarkably improved due to the coating's microstructure change and the rare earth doping effect. During the co-deposition process, some Ce^n+(n=3, 4) ions may be adsorbed to metal/solution interface and hinder nickel deposition. Ni-P/CeO2 coating's perfect amorphous structure results from the hindered crystal-typed deposition of nickel and the promoted deposition of phosphorous.展开更多
After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction pa...Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.展开更多
Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical comp...Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.展开更多
Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electroma...Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.展开更多
In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carrie...In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.展开更多
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf...Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.展开更多
Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have be...Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by sc...Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.展开更多
文摘The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.
基金Project(ZR2011EMM014)supported by Shandong Provincial Natural Science Foundation of China
文摘Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.
基金The research was supported by the National Hi-Tech R & D Program (863) of China (2002AA24515). Natural Science Foundation of Heilonjiang Province (C0210) and Harbin City Youth Science Fund (2004AFQXJ027).
文摘Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material with electrical and effective electromagnetic shielding properties. Ni-P alloy layer was obtained on wood surface. The surface feature of plated wood veneer was observed by SEM and the surface composition and microstructure of the layer under different conditions were investigated by EDS and XRD respectively. Meanwhile, the relevant surface resistivity and electromagnetic shielding effectiveness were measured. Correlations of the phosphorous content in the layer to the structure of Ni-P alloy, electro-conductivity and electromagnetic shielding of plated veneers were discussed. SEM photos showed that the surface of electroless nickel plated veneers were covered with Ni-P alloy layer entirely, which made wood veneers more like metal. At the same time, the results showed that with the decreasing of the phosphorous content in the layer, the microstructure of Ni-P alloy layer transformed to be microcrystalline and electro-conductivity and electromagnetic shielding effectiveness were improved. When the phosphorous content was less than 2.37wt pct in the layer, the microstructure of Ni-P alloy layer was microcrystalline structure and its sur- face resistivity and electromagnetic shielding effectiveness were nearly 0.5Ω/□ and 55-60dB respectively.
基金supported by National Natural Science Foundation of China (No.50833003)
文摘In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
文摘The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO_4/ZnSO_4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in ~NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.
文摘Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts using electrolessly-plated Ni-P/CNT. These catalysts were extensively characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Catalytic activities towards methanol oxidation and hydrogen evolution reactions were evaluated and benchmarked with a commercial Pt/C catalyst. Uniform dispersion of Pt on Ni-P particles led to high Pt utilization, and the electrochemical surface area of Pt^Ni-P/CNT with 12.1% Pt loading was found to be 126 m2 gà1, higher than that of a commercial Pt/C(77.9 m2 gà1). The Tafel slopes for the Pt^Ni-P/CNT catalysts were also found to be smaller than that of Pt/C indicating faster kinetics for hydrogen evolution reaction.
文摘The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金Project (ZR2011EMM014) supported by the Natural Science Foundation of Shandong Province, China
文摘Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.
基金Funded by the National Natural Science Foundation of China (No.59231011)the National Natural Science Foundation of Colombia (No.M018327)
文摘Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and differential scanning calorimeter (DSC) were used to examine surface morphology and microstructure of the coating. Aqueous corrosion was done in 3%NaCl+5%H2SO4 solution and high temperature oxidation was done at 750 ℃ in air. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. At high temperature, Ni3P precipitation and Ni crystallization took place in both coatings at different temperatures. Aqueous corrosion property and high temperature oxidation property of the composite coating were remarkably improved due to the coating's microstructure change and the rare earth doping effect. During the co-deposition process, some Ce^n+(n=3, 4) ions may be adsorbed to metal/solution interface and hinder nickel deposition. Ni-P/CeO2 coating's perfect amorphous structure results from the hindered crystal-typed deposition of nickel and the promoted deposition of phosphorous.
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
基金Project(9140A12060110BQ03)supported by the National Key Laboratory of Science and Technology on Materials under Shock and Impact,China
文摘Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.
基金Project(51371116)supported by the National Natural Science Foundation of ChinaProject(2009AA033501)supported by the Ministry of Science and Technology,China
文摘Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.
基金The research was supported by the National Natural Science Foundation of China (30571454). Natural Science Foundation of Heilongjiang Province (C0210) and Harbin City Youth Science Faud (2004AFQXJ027).
文摘Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.
文摘In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.
基金The project was financially supported by The Space Foundation of Supporting-Technology of China (No. 2002EK1803)the Graduate Starting Seed Fund of Northwestern Polytechnical University (No. W016663)
文摘Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.
基金supported by the National Natural Science Foundation of China(51602207)the Doctoral Scientific Research Foundation of Liaoning Province(20170520011)+3 种基金the Program for Liaoning Excellent Talents in Universities(LR2017074)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-201810)Fuzhou University,the Scientific Research Project of the Educational Department of Liaoning Province(LQN201712)Shenyang Excellent Talents in Universities(RC180211)~~
文摘Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50335060)the Excellent Young Teacher Award of the Education Ministry of China(No.[2002]383).
文摘Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.