The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-...The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.展开更多
Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were mea...Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.展开更多
Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts usi...Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts using electrolessly-plated Ni-P/CNT. These catalysts were extensively characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Catalytic activities towards methanol oxidation and hydrogen evolution reactions were evaluated and benchmarked with a commercial Pt/C catalyst. Uniform dispersion of Pt on Ni-P particles led to high Pt utilization, and the electrochemical surface area of Pt^Ni-P/CNT with 12.1% Pt loading was found to be 126 m2 gà1, higher than that of a commercial Pt/C(77.9 m2 gà1). The Tafel slopes for the Pt^Ni-P/CNT catalysts were also found to be smaller than that of Pt/C indicating faster kinetics for hydrogen evolution reaction.展开更多
Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material w...Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material with electrical and effective electromagnetic shielding properties. Ni-P alloy layer was obtained on wood surface. The surface feature of plated wood veneer was observed by SEM and the surface composition and microstructure of the layer under different conditions were investigated by EDS and XRD respectively. Meanwhile, the relevant surface resistivity and electromagnetic shielding effectiveness were measured. Correlations of the phosphorous content in the layer to the structure of Ni-P alloy, electro-conductivity and electromagnetic shielding of plated veneers were discussed. SEM photos showed that the surface of electroless nickel plated veneers were covered with Ni-P alloy layer entirely, which made wood veneers more like metal. At the same time, the results showed that with the decreasing of the phosphorous content in the layer, the microstructure of Ni-P alloy layer transformed to be microcrystalline and electro-conductivity and electromagnetic shielding effectiveness were improved. When the phosphorous content was less than 2.37wt pct in the layer, the microstructure of Ni-P alloy layer was microcrystalline structure and its sur- face resistivity and electromagnetic shielding effectiveness were nearly 0.5Ω/□ and 55-60dB respectively.展开更多
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of po...In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.展开更多
Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiati...Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.展开更多
The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effect...The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO_4/ZnSO_4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in ~NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.展开更多
Ni-plated glass beads(GB) was obtained by electroless plating, based on PVC adhesive, Niplated GB/PVC composite was prepared. Temperature insulation, fi re retardation and microwave absorption properties were tested...Ni-plated glass beads(GB) was obtained by electroless plating, based on PVC adhesive, Niplated GB/PVC composite was prepared. Temperature insulation, fi re retardation and microwave absorption properties were tested, the results showed that the nickel coating was compact and continuous, Ni-plated GB/ PVC composite is a kind of excellent temperature insulated, fi re retardate and light-weight material, and especially for microwave absorption well; Refl ectivity was lower than-2 dB in the frequency range of 11-17 GHz.展开更多
The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating wer...The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating...An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the ...The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the deposition rate varies with the ternary ligand concentration in plating solution. The structural and morphological characteristics of the coatings were analyzed by XRD and SEM. The anticorrosion properties of the Ni-P coatings were evaluated in 3.5% NaCl solution by electrochemical impedance and potentiodynamic polarization methods. The amount of ternary ligands in electroless plating bath has an significant effect on the surface morphology and structure of Ni-P coatings. The decrease of crystallization temperature and increase of crystallization heat of all the deposits with an increase in ternary ligand concentration are found by DSC measurements. The coating obtained with 0.035 mol/L ternary ligand additive in plating bath can offer a better surface homogeneity and improve corrosion resistance.展开更多
Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crysta...Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.展开更多
After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical comp...Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposite...A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.展开更多
Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by sc...Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.展开更多
文摘The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.
基金Project(ZR2011EMM014)supported by Shandong Provincial Natural Science Foundation of China
文摘Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.
文摘Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work,galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts using electrolessly-plated Ni-P/CNT. These catalysts were extensively characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Catalytic activities towards methanol oxidation and hydrogen evolution reactions were evaluated and benchmarked with a commercial Pt/C catalyst. Uniform dispersion of Pt on Ni-P particles led to high Pt utilization, and the electrochemical surface area of Pt^Ni-P/CNT with 12.1% Pt loading was found to be 126 m2 gà1, higher than that of a commercial Pt/C(77.9 m2 gà1). The Tafel slopes for the Pt^Ni-P/CNT catalysts were also found to be smaller than that of Pt/C indicating faster kinetics for hydrogen evolution reaction.
基金The research was supported by the National Hi-Tech R & D Program (863) of China (2002AA24515). Natural Science Foundation of Heilonjiang Province (C0210) and Harbin City Youth Science Fund (2004AFQXJ027).
文摘Wood is a kind of porous natural material with very poor electro-conductivity, and it has almost no function of electromagnetic shielding. The method of electroless nickel plating was used to produce wooden material with electrical and effective electromagnetic shielding properties. Ni-P alloy layer was obtained on wood surface. The surface feature of plated wood veneer was observed by SEM and the surface composition and microstructure of the layer under different conditions were investigated by EDS and XRD respectively. Meanwhile, the relevant surface resistivity and electromagnetic shielding effectiveness were measured. Correlations of the phosphorous content in the layer to the structure of Ni-P alloy, electro-conductivity and electromagnetic shielding of plated veneers were discussed. SEM photos showed that the surface of electroless nickel plated veneers were covered with Ni-P alloy layer entirely, which made wood veneers more like metal. At the same time, the results showed that with the decreasing of the phosphorous content in the layer, the microstructure of Ni-P alloy layer transformed to be microcrystalline and electro-conductivity and electromagnetic shielding effectiveness were improved. When the phosphorous content was less than 2.37wt pct in the layer, the microstructure of Ni-P alloy layer was microcrystalline structure and its sur- face resistivity and electromagnetic shielding effectiveness were nearly 0.5Ω/□ and 55-60dB respectively.
基金supported by National Natural Science Foundation of China (No.50833003)
文摘In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
文摘Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.
文摘The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO_4/ZnSO_4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in ~NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.
基金Funded in Part by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2011BAC10B05)
文摘Ni-plated glass beads(GB) was obtained by electroless plating, based on PVC adhesive, Niplated GB/PVC composite was prepared. Temperature insulation, fi re retardation and microwave absorption properties were tested, the results showed that the nickel coating was compact and continuous, Ni-plated GB/ PVC composite is a kind of excellent temperature insulated, fi re retardate and light-weight material, and especially for microwave absorption well; Refl ectivity was lower than-2 dB in the frequency range of 11-17 GHz.
文摘The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
文摘An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project(21073027)supported by the National Natural Science Foundation of ChinaProject(DUT10LK26)supported by the Fundamental Research Funds for the Central Universities of China
文摘The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the deposition rate varies with the ternary ligand concentration in plating solution. The structural and morphological characteristics of the coatings were analyzed by XRD and SEM. The anticorrosion properties of the Ni-P coatings were evaluated in 3.5% NaCl solution by electrochemical impedance and potentiodynamic polarization methods. The amount of ternary ligands in electroless plating bath has an significant effect on the surface morphology and structure of Ni-P coatings. The decrease of crystallization temperature and increase of crystallization heat of all the deposits with an increase in ternary ligand concentration are found by DSC measurements. The coating obtained with 0.035 mol/L ternary ligand additive in plating bath can offer a better surface homogeneity and improve corrosion resistance.
基金Project (ZR2011EMM014) supported by the Natural Science Foundation of Shandong Province, China
文摘Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
基金Project(51371116)supported by the National Natural Science Foundation of ChinaProject(2009AA033501)supported by the Ministry of Science and Technology,China
文摘Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
基金supported by the National Natural Science Foundation of China (Grant No.50671006)the National R&D Infrastructure and Facility Development Program of China (2005DKA10400-Z1)
文摘A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50335060)the Excellent Young Teacher Award of the Education Ministry of China(No.[2002]383).
文摘Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.