In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the p...In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and propert...A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and properties of the coatings was studied.The microstructure and phase structure of the Ni-P-SiC coatings were analyzed by scanning electron microscopy(SEM)and X-ray diffractometry(XRD).The corrosion and wear resistance performances of the coatings were also investigated through electrochemical technique and pin-on-disk tribometer,respectively.The results indicate that the composite coating is composed of Ni, P and SiC.It exhibits an amorphous structure and good adhesion to the substrate.The coatings have higher open circuit potential than that of the substrate.The composite coating obtained at pH value of 5.2 possesses optimal integrated properties,which shows similar corrosion resistance and ascendant wear resistance properties to the substrate.展开更多
Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the elect...Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the electroplating nickel as surface layer on AZ91D magnesium alloy was investigated.The coating surface morphology was observed with SEM and the structure was analyzed with XRD.Electrochemical tests and salt spray tests were carried out to study the corrosion resistance.The experimental results indicate that the dual coating is uniform,compact and pore-free.The adhesion strength between magnesium alloy substrate and electroless plating Ni-P bottom layer and electroplating nickel surface layer is perfect.The corrosion resistance of AZ91D magnesium alloy is greatly improved after being protected with the dual coating.展开更多
Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS...Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS and XRD techniques.Compact,uniform,and medium-phosphorus Ni-P coating with mixed crystalline-amorphous microstructure was obtained by applying a cathodic current density of4mA/cm^2at50℃.Also,island-like nickel clusters were deposited on the alloy surface under the same plating condition but without applying the cathodic current.In addition,the durability of the magnesium alloy against corrosion was strongly improved after plating via EPEP technique which was revealed by electrochemical examinations in3.5%NaCl(mass fraction)corrosive electrolyte.The results of the electrochemical examinations were confirmed by microscopic observations.Thickness,microhardness,porosity and adhesive strength of the deposits were also qualified.展开更多
Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P(Nickel-Phosphorous)coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coati...Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P(Nickel-Phosphorous)coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coatings were characterized by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD),respectively.The compressive tests were performed on the Mg/Ni hybrid foams at 400℃using the Mg alloy foams as a reference.The experimental results show that the yield strength,plateau stress and energy absorption capacity of the closed-cell Mg alloy foams at high temperature were improved by the Ni-P coating.And there are four main modes for the Mg/Ni hybrid foam failure at 400℃,i e,shearing in cell wall,bending in cell edge,shedding and cracking in Ni-P coating.展开更多
Ni-Co-P coatings containing Ni 46.13 wt%,Co 45.05 wt%and P 8.82 wt%were electroless-plated on carbon steel substrates and annealed at a series of temperatures.The structure of as-plated coatings was amorphous,and crys...Ni-Co-P coatings containing Ni 46.13 wt%,Co 45.05 wt%and P 8.82 wt%were electroless-plated on carbon steel substrates and annealed at a series of temperatures.The structure of as-plated coatings was amorphous,and crystallization took place around 623 K.By annealing the coatings at 823 K for 60 min,stable face-centered cubic Ni(Co) and Ni_3P phase were obtained.Electrical resistivity decreased remarkably by increasing the annealing temperature.Both saturation magnetization and coercivity attained their highest values when the coatings were annealed at 723 K.Totally,the Ni-Co-P coatings exhibited semi-hard magnetic characteristics and could be used as magnetic recording materials after annealing.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301105)the National Natural Science Foundation of China(No.51804190)+4 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2021ME240)the Youth Science Funds of Shandong Academy of Sciences,China(No.2020QN0022)the Shandong Province Key Research and Development Plan,China(Nos.2019GHZ019 and 2019JZZY020329)the Jinan Science&Technology Bureau,China(No.2019GXRC030)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)。
文摘In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金Project(KJ070602)supported by Program of Applied Science Foundation of Chongqing Education Committee,ChinaProject(KF0604)supported by the Open Foundation of Key Laboratory of Low Dimensional Materials&Application Technology(Xiangtan University),Ministry of Education,China
文摘A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and properties of the coatings was studied.The microstructure and phase structure of the Ni-P-SiC coatings were analyzed by scanning electron microscopy(SEM)and X-ray diffractometry(XRD).The corrosion and wear resistance performances of the coatings were also investigated through electrochemical technique and pin-on-disk tribometer,respectively.The results indicate that the composite coating is composed of Ni, P and SiC.It exhibits an amorphous structure and good adhesion to the substrate.The coatings have higher open circuit potential than that of the substrate.The composite coating obtained at pH value of 5.2 possesses optimal integrated properties,which shows similar corrosion resistance and ascendant wear resistance properties to the substrate.
基金Project(2007CB613705)supported by the National Key Basic Research ProgramProject(2006BAE04B05-2)supported by the NationalKey Technology R&D Program of China
文摘Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the electroplating nickel as surface layer on AZ91D magnesium alloy was investigated.The coating surface morphology was observed with SEM and the structure was analyzed with XRD.Electrochemical tests and salt spray tests were carried out to study the corrosion resistance.The experimental results indicate that the dual coating is uniform,compact and pore-free.The adhesion strength between magnesium alloy substrate and electroless plating Ni-P bottom layer and electroplating nickel surface layer is perfect.The corrosion resistance of AZ91D magnesium alloy is greatly improved after being protected with the dual coating.
文摘Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS and XRD techniques.Compact,uniform,and medium-phosphorus Ni-P coating with mixed crystalline-amorphous microstructure was obtained by applying a cathodic current density of4mA/cm^2at50℃.Also,island-like nickel clusters were deposited on the alloy surface under the same plating condition but without applying the cathodic current.In addition,the durability of the magnesium alloy against corrosion was strongly improved after plating via EPEP technique which was revealed by electrochemical examinations in3.5%NaCl(mass fraction)corrosive electrolyte.The results of the electrochemical examinations were confirmed by microscopic observations.Thickness,microhardness,porosity and adhesive strength of the deposits were also qualified.
基金Funded by the National Natural Science Foundation of China(Nos.51874093,51174060,and 51661031)the Fundamental Research Funds for the Central Universities(N182504015)the Liaoning Province Key r&d Project(No.2019JH2/10100008)。
文摘Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P(Nickel-Phosphorous)coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coatings were characterized by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD),respectively.The compressive tests were performed on the Mg/Ni hybrid foams at 400℃using the Mg alloy foams as a reference.The experimental results show that the yield strength,plateau stress and energy absorption capacity of the closed-cell Mg alloy foams at high temperature were improved by the Ni-P coating.And there are four main modes for the Mg/Ni hybrid foam failure at 400℃,i e,shearing in cell wall,bending in cell edge,shedding and cracking in Ni-P coating.
基金Item Sponsored by National Natural Science Foundation of China[No.61107080]Fundamental Research Funds for the Central Universities of China[2010QNA08]
文摘Ni-Co-P coatings containing Ni 46.13 wt%,Co 45.05 wt%and P 8.82 wt%were electroless-plated on carbon steel substrates and annealed at a series of temperatures.The structure of as-plated coatings was amorphous,and crystallization took place around 623 K.By annealing the coatings at 823 K for 60 min,stable face-centered cubic Ni(Co) and Ni_3P phase were obtained.Electrical resistivity decreased remarkably by increasing the annealing temperature.Both saturation magnetization and coercivity attained their highest values when the coatings were annealed at 723 K.Totally,the Ni-Co-P coatings exhibited semi-hard magnetic characteristics and could be used as magnetic recording materials after annealing.