[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used ...[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.展开更多
The effects of single Cd^(2+)and Pb^(2+),and combined Cd^(2+)and Pb^(2+)on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland(IVCW)were stud...The effects of single Cd^(2+)and Pb^(2+),and combined Cd^(2+)and Pb^(2+)on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland(IVCW)were studied.Dehydrogenase activities decreased linearly with the increasing concentrations of Cd^(2+)and Pb^(2+)at different times(6,24,72,and 120 h).The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments.The single Cd^(2+)and...展开更多
The integrated vertical-flow constructed wetland(IVCW) was simulated with three suits of designed experiment columns planted with Kandelia candel.Units A,B and C were irrigated with sewage of different salinity(A...The integrated vertical-flow constructed wetland(IVCW) was simulated with three suits of designed experiment columns planted with Kandelia candel.Units A,B and C were irrigated with sewage of different salinity(A:10‰ B:20‰,C:30‰),respectively.The removal rates of dissolved organic carbon(DOC),NH3-N and NO3--N dropped 90.4%-48.6%,80.2%-40.3% and 84.8%-60.9%,respectively,when salinity increases from 10‰ to 30‰.The removal rate of TP increased 14%-31.2%,oppositely.A 20-day inflow salinity drastic change shock affective trial was done on units D and E.Unit D was used as a control and irrigated with saline sewage(20‰).Unit E was irrigated with sewage with low salinity(5‰) as a salinity drastic change shock on the third and fourth days.DOC,NH3-N and NO3--N removal efficiency of unit E showed a three-stage process of change,"rapidly decrease,increase beyond the normal standard,and then back to the normal standard".TP removal value was negative during the 2-day shock period.展开更多
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was develope...Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH4^+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH4+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m^3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.展开更多
基金Supported by National Major Science and Technology Projects(2009ZX07317-006)National Major Science and Technology Projects(2009ZX07317-009)~~
文摘[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.
文摘The effects of single Cd^(2+)and Pb^(2+),and combined Cd^(2+)and Pb^(2+)on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland(IVCW)were studied.Dehydrogenase activities decreased linearly with the increasing concentrations of Cd^(2+)and Pb^(2+)at different times(6,24,72,and 120 h).The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments.The single Cd^(2+)and...
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009ZX07106-002-004)the National Natural Science Foundation of China (50808172,30870221)
文摘The integrated vertical-flow constructed wetland(IVCW) was simulated with three suits of designed experiment columns planted with Kandelia candel.Units A,B and C were irrigated with sewage of different salinity(A:10‰ B:20‰,C:30‰),respectively.The removal rates of dissolved organic carbon(DOC),NH3-N and NO3--N dropped 90.4%-48.6%,80.2%-40.3% and 84.8%-60.9%,respectively,when salinity increases from 10‰ to 30‰.The removal rate of TP increased 14%-31.2%,oppositely.A 20-day inflow salinity drastic change shock affective trial was done on units D and E.Unit D was used as a control and irrigated with saline sewage(20‰).Unit E was irrigated with sewage with low salinity(5‰) as a salinity drastic change shock on the third and fourth days.DOC,NH3-N and NO3--N removal efficiency of unit E showed a three-stage process of change,"rapidly decrease,increase beyond the normal standard,and then back to the normal standard".TP removal value was negative during the 2-day shock period.
基金supported by the Science and Technology Project of the Education Department of Jiangxi Province of China (No.170688).
文摘Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH4^+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH4+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m^3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.