期刊文献+
共找到2,412篇文章
< 1 2 121 >
每页显示 20 50 100
Sandwich-type composited solid polymer electrolytes to strengthen the interfacial ionic transportation and bulk conductivity for all-solid-state lithium batteries from room temperature to 120℃
1
作者 Jiewen Tan Zhen Wang +7 位作者 Jiawu Cui Zhanhui Jia Wensheng Tian Chao Wu Chengxin Peng Chengyong Shu Kang Yang Wei Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期288-295,I0007,共9页
The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m... The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures. 展开更多
关键词 PEO-based solid electrolytes CeO_(2)nanoparticles Charge transfer impedance Sandwich-type composite electrolytes All-solid-state Li metal batteries
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
2
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Coupling of Adhesion and Anti‑Freezing Properties in Hydrogel Electrolytes for Low‑Temperature Aqueous‑Based Hybrid Capacitors
3
作者 Jingya Nan Yue Sun +9 位作者 Fusheng Yang Yijing Zhang Yuxi Li Zihao Wang Chuchu Wang Dingkun Wang Fuxiang Chu Chunpeng Wang Tianyu Zhu Jianchun Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期15-31,共17页
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea... Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors. 展开更多
关键词 Interfacial adhesion ANTI-FREEZING Hydrogel electrolytes Low-temperature hybrid capacitors Dynamic deformati
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
4
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
Overcoming the Na-ion conductivity bottleneck for the cost-competitive chloride solid electrolytes
5
作者 Lv Hu Hui Li +3 位作者 Fang Chen Yating Liu Jinzhu Wang Cheng Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期1-8,I0001,共9页
Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commerciali... Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃. 展开更多
关键词 All-solid-state sodium batteries Ionic conductivities Solid electrolytes Chlorides High voltage stability
下载PDF
Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers
6
作者 Haoyang Yuan Changhao Tian +3 位作者 Mengyuan Song Wenjun Lin Tao Huang Aishui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期628-636,共9页
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin... Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design. 展开更多
关键词 Composite solid-state electrolytes Lithium metal anode Dual fillers Interfacial ionic conduction Inert nano-alumina
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms
7
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor Polymer electrolytes Ion transport mechanism Li-ion transport number
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
8
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries:Challenges,strategies,and perspectives
9
作者 Zhihui Jia Yong Liu +4 位作者 Haoming Li Yi Xiong Yingjie Miao Zhongxiu Liu Fengzhang Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期548-571,共24页
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri... Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed. 展开更多
关键词 In-situ polymerization Polyethylene oxide Solid polymer electrolytes Lithium metal anodes
下载PDF
Data-Driven Viewpoint for Developing Next-Generation Mg-Ion Solid-State Electrolytes
10
作者 Fang-Ling Yang Ryuhei Sato +5 位作者 Eric Jianfeng Cheng Kazuaki Kisu Qian Wang Xue Jia Shin-ichi Orimo Hao Li 《电化学(中英文)》 CAS 北大核心 2024年第7期38-49,共12页
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o... Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs. 展开更多
关键词 Data mining Magnesium-ion solid-state electrolytes All-solid-state batteries Magnesium-ion conductivity
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
11
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:1
12
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes Interface engineering
下载PDF
Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries 被引量:1
13
作者 Xiaochen Yang Xinyu Wang +2 位作者 Yue Xiang Longtao Ma Wei Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期227-253,共27页
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame... With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics. 展开更多
关键词 Asymmetric electrolyte Aqueous multivalent metal ion batteries Electrochemical stability windows Electrolyte interface
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
14
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte Solid polymer electrolyte High safety electrolyte Solid state electrolyte Solid state battery
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes
15
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage Electrolyte additive Solid electrolyte
下载PDF
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries
16
作者 Haiyang Liao Wenzhao Zhong +8 位作者 Chen Li Jieling Han Xiao Sun Xinhui Xia Ting Li Abolhassan Noori Mir F.Mousavi Xin Liu Yongqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期565-578,I0013,共15页
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self... The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices. 展开更多
关键词 Flexible aqueous battery Hydrogel electrolyte ANTI-FREEZING SELF-HEALING Dual-dynamic reversible bond
下载PDF
Solvation strategies in various electrolytes for advanced zinc metal anode
17
作者 Zhenxu Wang Lichong Bai +2 位作者 Hongguang Fan Yanpeng Wang Wei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期740-757,共18页
Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite gr... Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs. 展开更多
关键词 Solvation strategy ELECTROLYTE Aqueous zinc-ion batteries Zinc dendrite
下载PDF
Effect of the anionic composition of sulfolane based electrolytes on the performances of lithium-sulfur batteries
18
作者 Elena V.Karaseva Elena V.Kuzmina +2 位作者 Bo-Quan Li Qiang Zhang Vladimir S.Kolosnitsyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期231-240,I0005,共11页
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,... In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes. 展开更多
关键词 Donor number Lithium salt SULFOLANE Lithium polysulfide ELECTROLYTE Lithium-sulfur battery Lithium metal electrode
下载PDF
Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries
19
作者 马静媛 黄昱力 +5 位作者 周晗洁 王媛媛 李建刚 禹习谦 李泓 李妍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期176-180,共5页
Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion co... Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO_(4)/BaTiO_(3) composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO_(3) possesses a high room-temperature lithium-ion conductivity (9.85 × 10^(−4) S⋅cm^(−1)), high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li+/Li). The Li|Li symmetric battery assembled with 5 wt% BaTiO_(3) can be stably circulated for 800 h at 0.1 mA⋅cm^(−2), and the LiFePO_(4)|CSE|Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO_(3) ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology. 展开更多
关键词 battery LITHIUM ELECTROLYTE
下载PDF
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
20
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes ALLOYING Anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部