期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Drinking Slightly Acidic Electrolytic Water on Growth Performance and Behavior of Broilers 被引量:1
1
作者 Ji Zhenzhen Hui Xue +2 位作者 Shi Zhifang Xi Lei Zhai Feile 《Animal Husbandry and Feed Science》 CAS 2020年第3期25-29,共5页
[Objective]The paper was to study the effects of drinking slightly acidic electrolytic water on growth performance and behavior of Rose 308 broilers,and to provide reference for the application of slightly acidic elec... [Objective]The paper was to study the effects of drinking slightly acidic electrolytic water on growth performance and behavior of Rose 308 broilers,and to provide reference for the application of slightly acidic electrolytic water in broiler breeding.[Method]A total of 300 healthy 10-day-old Rose 308 broilers with similar body weight were randomly divided into five groups,three replicates each group,20 broilers each replicate.The broilers in control group were supplied with normal drinking water,and the broilers in experimental groups consumed slightly acidic electrolytic water with 0.3,0.5,0.7,1.0 mg/L residual chlorine,respectively.The test lasted 21 d.[Result]At 10-30 days of age,the water consumption of broilers in 0.7 and 1.0 mg/L electrolytic water groups were increased by 9.27%and 7.67%respectively compared with the control group(M<0.05).The average daily feed intake(ADFI)of broilers in 0.7 and 1.0 mg/L electrolytic water groups were increased compared with the control group(Q0.05).The average daily gain(ADG)of broilers in 0.7 mg/L electrolytic water group was 11.99%lower than that in control group(M<0.05).The feed gain ratio(F/G)of broilers in 0.5 mg/L electrolytic water group was 12.29%lower than that in control group(M<0.05),and the mortality was the lowest in 0.5 mg/L electrolytic water group.The standing,feeding and drinking frequency of broilers in experimental groups were higher than that in control group,and the flapping behavior of broilers in 0.5 mg/L electrolytic water group was the lowest.[Conclusion]Drinking slightly acidic electrolytic water has positive effect on the growth and behavior of broilers. 展开更多
关键词 Slightly acidic electrolytic water Rose 308 broilers Growth performance BEHAVIOR
下载PDF
Ru-doped functional porous materials for electrocatalytic water splitting 被引量:5
2
作者 Chongao Tian Rui Liu +2 位作者 Yu Zhang Wenxiu Yang Bo Wang 《Nano Research》 SCIE EI CSCD 2024年第3期982-1002,共21页
Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotenti... Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency.Up to date,Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts,but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices.As an attractive candidate for the Pt/Ir catalysts,series of Ru-based nanomaterials have aroused much attention for their low price,Pt-like hydrogen bond strength,and high EWS activity.In particular,Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts,which can not only achieve the dispersion and adjustment for active Ru sites,but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS.In this review,the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized,including Ru-doped metal organic frameworks(MOFs),Ru-doped porous organic polymers(POPs),and their derivatives.Meanwhile,detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review.Last but not least,the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts. 展开更多
关键词 Ru-based catalyst functional porous materials electrolytic water splitting oxygen evolution reaction hydrogen evolution reaction
原文传递
Bi-salt electrolyte for aqueous rechargeable aluminum battery
3
作者 Yaning Gao Yu Li +3 位作者 Haoyi Yang Lumin Zheng Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期613-620,共8页
The exertion of superior high-energy density based on multivalent ions transfer of rechargeable aluminum batteries is greatly hindered by limited electrochemical stability window of typical water in salt electrolyte(W... The exertion of superior high-energy density based on multivalent ions transfer of rechargeable aluminum batteries is greatly hindered by limited electrochemical stability window of typical water in salt electrolyte(Wi SE). Recently, it is reported that a second salt addition to the Wi SE can offer further suppression of water activities, and achieves a much wider electrochemical window compared with aqueous Wi SE electrolytes. Hence, we demonstrate a class of water in bi-salt electrolyte containing the trifluoromethanesulfonate(OTF), which exhibits an ultra-wide electrochemical window of 4.35 V and a very low overpotential of 14.6 m V. Moreover, the interface chemistry between cathode and electrolyte is also confirmed via kinetic analysis. Surprisingly, we find the electrolyte can effectively suppress Mn dissolution from the cathode, alleviate self-discharge behavior, and ensure a stable electrode–electrolyte interface based on the interface concentrated-confinement effect. Owing to these unique merits of water in bi-salt electrolyte, the AlxMnO_(2)·nH_(2)O material delivers a high capacity of 364 m Ah g;and superb long-term cycling performance > 150 cycles with a capacity decay rate of 0.37% per cycle with coulombic efficiency at ca. 95%. 展开更多
关键词 Rechargeable aluminum battery water in bi-salt electrolyte Wide electrochemical window Stable surface Reaction mechanisms
下载PDF
Engineering membrane electrode assembly for advanced polymer electrolyte water electrolyzer 被引量:1
4
作者 Heming Liu Xin Kang +10 位作者 Taifeng Zhao Zhiyuan Zhang Shiyu Ge Shuqi Hu Yuting Luo Fengning Yang Shao-Hai Li Chenghua Sun Qiangmin Yu Hui-Ming Cheng Bilu Liu 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3243-3272,共30页
As an important energy carrier in terms of carbon neutrality,green hydrogen produced by water electrolysis using renewable electricity has attracted worldwide attention.The polymer electrolyte water electrolyzer(PEWE)... As an important energy carrier in terms of carbon neutrality,green hydrogen produced by water electrolysis using renewable electricity has attracted worldwide attention.The polymer electrolyte water electrolyzer(PEWE)has the potential to be a mainstay in the green hydrogen market in the future because of its superior performance.However,the development of PEWE is constrained by the slow progress of the membrane electrode assembly(MEA),which is an essential component of PEWE and largely determines the cost and performance of the system.Therefore,the MEA must be optimized from the aspects of reducing cost and improving performance to promote the development of PEWEs.In this review,we first discuss the recent progress of the materials and design strategies of MEA,including the cost,activity,and stability of catalysts,distribution and thickness of ionomers,and ion transport efficiency of ion exchange membranes(IEMs).Then,the effects of all components and interlayer interfaces on the ions,electrons,and mass transfer in MEA and,consequently,the performance of PEWE are analyzed.Finally,we propose perspectives on developing MEA by optimizing the catalyst activity and stability of IEM,interface contact between adjacent components,and evaluation methods of performance. 展开更多
关键词 water electrolysis polymer electrolyte water electrolyser membrane electrolyte assembly ELECTROCATALYST
原文传递
高熵合金在水电解中的研究进展、基础与挑战 被引量:3
5
作者 张泉 廉康 +5 位作者 齐高璨 张书胜 刘倩 罗扬 罗俊 刘熙俊 《Science China Materials》 SCIE EI CAS CSCD 2023年第5期1681-1701,共21页
氢能作为一种清洁能源,已成为全球能源战略的重要组成部分,也是实现全球“碳中和”的必要途径之一.在可再生电力的驱动下,水电解法有望成为实现“零碳”排放的一种理想的长期制氢方法.与传统合金相比,高熵合金由于其独特的结构特征,包... 氢能作为一种清洁能源,已成为全球能源战略的重要组成部分,也是实现全球“碳中和”的必要途径之一.在可再生电力的驱动下,水电解法有望成为实现“零碳”排放的一种理想的长期制氢方法.与传统合金相比,高熵合金由于其独特的结构特征,包括占位无序和晶格有序,可提供更多的催化活性位点.它们在水解催化剂领域具有广泛的应用前景.本文综述了电解水的机理、水解过程中高熵合金的催化原理,以及高熵合金作为电解水催化剂的最新研究进展.总结了新型高熵合金设计方面存在的难点及其应用潜力,重点讨论了高熵合金在水解催化过程中表面形态和催化活性之间的联系.最后归纳了高熵合金的组成调控及其在水电解等新兴领域的可能应用前景. 展开更多
关键词 high-entropy alloys electrolytic water splitting catalysts design hydrogen evolution reaction oxygen evolution reaction
原文传递
Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction
6
作者 LEI Chong LI Wenzheng +3 位作者 WANG Gongwei ZHUANG Lin LU Juntao XIAO Li 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第2期293-297,共5页
Developing efficient catalysts toward the oxygen evolution reaction(OER)is important for water splitting and rechargeable metal-air batteries.Although NiFe oxides are considered as potentially applicable catalysts in ... Developing efficient catalysts toward the oxygen evolution reaction(OER)is important for water splitting and rechargeable metal-air batteries.Although NiFe oxides are considered as potentially applicable catalysts in the alkaline media,there are still a limited numbers of researches working on membrane electrode assembly(MEA)fed with pure water due to their poor electrical conductivity.In this work,antimony doped tin oxide(ATO)has been employed as conductive supports where NiFe layered double hydroxide uniformly dispersed[named NiFe-LDH(layered double hydroxide)/ATO].The catalysts have been synthesized by a one-step co-precipitation method,and then NiFe-LDH/ATO-air plasma was obtained through mild air plasma treatment.According to XPS analysis,binding energies of Ni2p and Fe2p were shifted negatively.Moreover,a new signal of low oxygen coordination appeared on O1s spectrum after air plasma treatment.These XPS results indicated that oxygen vacancies(Ov)were generated after air plasma treatment.Electrochemical measurement indicated that the vacancy-rich NiFe-LDH/ATO-air plasma exhibited better performance than NiFe-LDH/ATO not only in 1 mol/L KOH solutions but also in an alkaline polymer electrolyte water electrolyzer(APEWE)fed with deionized water.This work provides a feasible way to design practical catalysts used in electrochemical energy conversion systems by choosing corrosion resistance supports and defect engineering. 展开更多
关键词 Antimony doped tin oxide(ATO) Air plasma Oxygen vacancy Alkaline polymer electrolyte water electrolyzer(APEWE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部