Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s...Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.展开更多
Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 met...Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.展开更多
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli...Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes.展开更多
Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet...Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.展开更多
The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentia...The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance.展开更多
A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with l...A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ^2 and electrochemical effectiveness factor η are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode. Profile of the reactant along axial direction is discussed, dependence of electrode potential V on current density J, are predicated by means of the newly developed mathematical model.展开更多
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos...Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.展开更多
The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and san...The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and sandwich model lithium batteries consisting of Li metal | ionic liquid electrolyte | graphite electrode have been constructed and investigated by a series of in situ surface analysis platforms including atomic force microscopy, Raman and X-ray photoelectron spectroscopy. It is found that the choice of electrolyte, including the concentration and contents, has a profound effect on the SEI formation and evolution, and the subsequent ion intercalation. A smooth and compact SEI is preferably produced in highconcentration electrolytes, with FSI^(-) salt superior to TFSI^(-) salt, facilitating the lithiation/delithiation to achieve high capacity and excellent cycle stability, while suppressing the co-intercalation of electrolyte solvent ions. The innovative research scenario of well-defined model batteries in combination with multiple genuinely in situ surface analysis methods presented herein leads to insightful results, which provide valuable strategies for the rational design and optimization of practical batteries, and energy storage devices in general.展开更多
Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ...Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.展开更多
All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitab...All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries.展开更多
The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,...The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.展开更多
Ionic liquids(ILs)have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries,owing to their negligible volatility,low-flammability,and high thermal stab...Ionic liquids(ILs)have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries,owing to their negligible volatility,low-flammability,and high thermal stability,etc.The profound structural designability of IL cations and anions allows relatively facile regulations of their key physical(e.g.,viscosities,and ionic conductivities)and electrochemical(e.g.,anodic,and cathodic stabilities)properties,and therefore fulfills the critical requirements stipulated by various battery configurations.In this review,a historical overview on the development of ILs for nonaqueous electrolytes is provided,and the correlations between chemical structures and the basic properties of ILs are discussed.Furthermore,the key achievements in the field of IL-based electrolytes are scrutinized,including liquid electrolytes,polymer electrolytes,and composite polymer electrolytes.Based on literature reports and our previous work in this field,possible strategies to improve the performance of IL-based electrolytes and their rechargeable batteries are discussed.The present work not only provides the status quo in the development of IL-based electrolytes but also inspires the structural design of ILs for other kinds of rechargeable batteries(e.g.,sodium,potassium,zinc batteries).展开更多
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid...Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.展开更多
Lithium-sulfur(Li-S)battery has been considered as one of the most promising future batteries owing to the high theoretical energy density(2600 W-h-kg-1)and the usage of the inexpensive active materials(elemental sulf...Lithium-sulfur(Li-S)battery has been considered as one of the most promising future batteries owing to the high theoretical energy density(2600 W-h-kg-1)and the usage of the inexpensive active materials(elemental sulfur).The recent progress in fundamental research and engineering of the Li-S battery,involved in electrode,electrolyte,membrane,binder,and current collector,has greatly promoted the performance of Li s batteries from the laboratory level to the approaching practical level.However,the safety concerns still deserve attention in the following application stage.This review focuses on the development of the electrolyte for Li S batteries from liquid state to solid state.Some problems and the corresponding solutions are emphasized,such as the soluble lithium polysulfides migration,ionic conductivity of electrolyte,the interface contact between electrolyte and electrode,and the reaction kinetics.Moreover,future perspectives of the safe and high-performance Li S batteries arealso introduced.展开更多
An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries.Herein,a comprehensive double-salt local high-concentration sulfolane-based electroly...An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries.Herein,a comprehensive double-salt local high-concentration sulfolane-based electrolyte(DLi)is proposed with specific sheath structure to build stable interface on the LiNi_(0.8)Co_(0.1)Mn_(0.1O2)(NCM811)cathode at wide operating temperature between−60 and 55℃.Lithium perchlorate(LiClO_(4))in combination with high concentration lithium bis-(trifluoromethanesulfonyl)imide(LiTFSI)strengthens the internal interaction between anion and cation in the solvation structure,increasing Li+transference number of the electrolyte to 0.61.Moreover,the structure and component characteristics of the passive interface layer on NCM811 are modulated,decreasing desolvation energy of Li+ions,benefiting Li+transport dynamics especially at low temperature,and also ensuring the interfacial stability at a wide operating temperature range.As a result,the cathode with DLi exhibits excellent high-temperature storage performance and high capacity retention of 80.5%in 100 cycles at 55℃.Meanwhile,the Li||NCM811 cells can deliver high discharge capacity of 160.1,136.1,and 110.3 mAh·g^(−1)under current density of 0.1 C at−20,−40,and−60℃,maintaining 84.5%,71.8%,and 58.2%of the discharge capacity at 30℃,respectively.Moreover,it enables NCM811 cathode to achieve a reversible capacity of 142.8 mAh·g^(−1)in 200 cycles at−20℃and 0.2 C.Our studies shed light on the molecular strategy of wide operational temperature electrolyte for high nickel ternary cathode.展开更多
Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly e...Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly efficient Li-ion transfer for solid–liquid Li metal batteries.Understanding the ionic transport mechanisms in CLHEs and the corresponding role of ceramic electrolytes is crucial for a rational design strategy.Herein,the Li-ion transfer in the ceramic electrolytes of CLHEs was confirmed by tracking the 6Li and 7Li substitution behavior through solid-state nuclear magnetic resonance spectroscopy.The ceramic and liquid electrolytes simultaneously participate in Li-ion transport to achieve highly efficient Li-ion transfer in CLHEs.A spontaneous Li-ion exchange was also observed between ceramic and liquid electrolytes,which serves as a bridge that connects the ceramic and liquid electrolytes,thereby greatly strengthening the continuity of Li-ion pathways in CLHEs and improving the kinetics of Li-ion transfer.The importance of an abundant solid–liquid interface for CLHEs was further verified by the enhanced electrochemical performance in LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li batteries from the generated interface.This work provides a clear understanding of the Li-ion transport pathway in CLHEs that serves as a basis to build a universal Li-ion transport model of CLHEs.展开更多
With the increasing demand and striking upsurge in the price of lithium carbonate,sodium-ion batteries(SIBs)have gained significant attentions due to their abundance over lithium-ion batteries(LIBs).Some prototype SIB...With the increasing demand and striking upsurge in the price of lithium carbonate,sodium-ion batteries(SIBs)have gained significant attentions due to their abundance over lithium-ion batteries(LIBs).Some prototype SIBs have achieved great progress in terms of energy densities.Although SIBs show a relatively higher tolerance at the low temperature than LIBs due to the weaker cation–solvent interaction,the low-temperature performance of SIBs remains a critical challenge restricted by the electrolyte solidification and sluggish interphasial kinetics.In this review,we briefly cover the latest research progress in usable low-temperature electrolytes for SIBs.In the meantime,the mitigating mechanism and low-temperature performance of the electrolytes in different SIB configurations are also discussed.The merits and demerits of ether-based and carbonate-based electrolytes are compared to demonstrate their potential and limitations,thus providing application principles for ether-based and carbonate-based electrolytes at low temperatures to maximize their advantages.Furthermore,mitigation strategies for lowtemperature electrolytes are emphasized to guide the future electrolyte design.Finally,we provide some perspectives on the development of the low-temperature electrolytes for SIBs.展开更多
Here, we report an observation that illustrate the potential of polyelectrolyte microgels in salt-free solutions to display a high ionic conductivity. Laser light scattering and ionic conductivity tests on very dilute...Here, we report an observation that illustrate the potential of polyelectrolyte microgels in salt-free solutions to display a high ionic conductivity. Laser light scattering and ionic conductivity tests on very dilute aqueous dispersions of the microgels indicate that both small size and swollen state of gel particles play vital roles, which should favor the counterions to freely penetrate and leave gel particles, and thus can contribute to the ion-conducting property. Upon discovering this on microgels that are composed of imidazolium-based poly(ionic liquid), we also illustrate the generality of the finding to single lithium-ion polyelectrolyte microgels that are of more technically relevant features for applications, for instance, as injectable liquid “microgel-in-solution” electrolytes of high conductivity(ca. 8.2 × 10^(-2)S/m at 25.0 ℃ for1.0 × 10^(-2)g/m L of microgels in a LiNO_(3)-free 1:1 v/v mixture of 1,2-dioxolane and dimethoxymethane) and high lithium-ion transference number(0.87) for use in the rechargeable lithium-sulfur battery.展开更多
In recent years,zinc-ion batteries(ZIBs)have been considered one of the most promising candidates for next-generation electrochemical energy storage systems due to their advantages of high safety,high specific capacit...In recent years,zinc-ion batteries(ZIBs)have been considered one of the most promising candidates for next-generation electrochemical energy storage systems due to their advantages of high safety,high specific capacity and high economic efficiency.As an indispensable component,the electrolyte has the function of connecting the cathode and the anode,and plays a key role in the performance of the battery.Different types of electrolytes have different effects on the performance of ZIBs,and the use of additives has further developed the research on modified electrolytes,thus effectively solving many serious problems faced by ZIBs.Therefore,to further explore the improvement of ZIBs by electrolyte engineering,it is necessary to summarize the current status of the design of various electrolyte additives,as well as their functions and mechanism in ZIBs.This paper analyzes the challenges faced by different electrolytes,reviews the different solutions of additives to solve battery problems in liquid electrolytes and solid electrolytes,and finally makes suggestions for the development of modified ZIB electrolytes.It is hoped that the review and strategies proposed in this paper will facilitate development of new electrolyte additives for ZIBs.展开更多
In the development of new electrochemical concepts for the fabrication of high-energy-density batteries,fluorideion batteries(FIBs)have emerged as one of the valid candidates for the next generation electrochemical en...In the development of new electrochemical concepts for the fabrication of high-energy-density batteries,fluorideion batteries(FIBs)have emerged as one of the valid candidates for the next generation electrochemical energy storage technologies,showing the potential to match or even surpass the current lithium-ion batteries(LIBs)in terms of energy density,safety without dendritic grains,and elimination of dependence on scarce lithium and cobalt resources.However,the development of FIBs is still in its infancy and their performance is far from satisfactory,with issues such as the lower fluoride-ion conductivity of the electrolytes and the reversibility of the electrodes hindering their commercialization.Previous reviews have mainly focused on inorganic solid electrolytes with a brief emphasis on the development of various fluoride-ion conductors and their ion-conducting properties.Therefore,this review summarizes the current developments in various electrolytes,a systematic overview of the current progress for various fluoride-ion electrolytes is presented by beginning with the history,structure and classification of FIBs,ion-transport mechanisms are briefly discussed.Recent advances in different classes of fluoride-ion electrolytes are described.The methods for optimizing the ionic conductivity characteristics of the fluoride-ion electrolytes are highlighted.Finally,an outlook on the future research direction of FIBs is given by highlighting some critical issues,challenges and prospects of fluoride-ion electrolytes.展开更多
基金support from China Postdoctoral Science Foundation(Grant No.2021M690960)China CSC abroad studying fellowship.R.C.thanks the KIST Europe basic research funding“new electrolytes for redox flow batteries”and the partial financial support from the CMBlu Energy AG.Y.Z.thanks to the support received from the National Natural Science Foundation of China(Grant No.22002009)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40565).
文摘Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.
基金supported by the National Basic Research Program of China (No. 2015CB251100)the Program for New Century Excellent Talents in University (NCET-13-0033)+1 种基金the Beijing Co-construction Project (No. 20150939014)the Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials
文摘Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education(NRF-2019R1A2C1084836,NRF-2018M1A2A2061994,and NRF-2021R1A4A2001403)the KU-KIST School Program。
文摘Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes.
基金the Australian Research Council for its support through the Discovery Project scheme (DP190103186)the Industrial Transformation Training Centre Scheme(IC180100005)。
文摘Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.
基金financial support from Natural Science Foundation of Inner Mongolia(No.2019MS05068)Inner Mongolia scientific and technological achievements transformation project(CGZH2018132)+3 种基金Inner Mongolia major science and technology project(2020ZD0024)the research project of Inner Mongolia Electric Power(Group)Co.,Ltd for post-doctoral studies,the Hong Kong Polytechnic University start-up funding,National Nature Science Foundation of China(No.51872157)Shenzhen Key Laboratory on Power Battery Safety Research(No.ZDSYS201707271615073)financial support from the Australian Research Council(DE190100445).
文摘The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance.
基金This researchis supported by Shanghai Education Committee(06-OZ-003)Shanghai Key Subject(p1501)
文摘A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ^2 and electrochemical effectiveness factor η are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode. Profile of the reactant along axial direction is discussed, dependence of electrode potential V on current density J, are predicated by means of the newly developed mathematical model.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB932400)the National Natural Science Foundation of China(Grant No.51772167)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M591169)the Shenzhen Municipal Basic Research Project,China(Grant No.JCYJ20170412171311288)
文摘Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.
基金financially supported by the National Key R&D Program of China(No.2016YFA0200200)the National Natural Science Foundation of China(Nos.21688102 and 21825203)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17020000)。
文摘The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and sandwich model lithium batteries consisting of Li metal | ionic liquid electrolyte | graphite electrode have been constructed and investigated by a series of in situ surface analysis platforms including atomic force microscopy, Raman and X-ray photoelectron spectroscopy. It is found that the choice of electrolyte, including the concentration and contents, has a profound effect on the SEI formation and evolution, and the subsequent ion intercalation. A smooth and compact SEI is preferably produced in highconcentration electrolytes, with FSI^(-) salt superior to TFSI^(-) salt, facilitating the lithiation/delithiation to achieve high capacity and excellent cycle stability, while suppressing the co-intercalation of electrolyte solvent ions. The innovative research scenario of well-defined model batteries in combination with multiple genuinely in situ surface analysis methods presented herein leads to insightful results, which provide valuable strategies for the rational design and optimization of practical batteries, and energy storage devices in general.
文摘Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M3H4A1A02045953 and No.NRF-2021R1C1C2007797)。
文摘All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries.
基金supported by the Climate Change Response Project(NRF-2019M1A2A2065612)the Basic Science Grant(NRF2019R1A4A1029237)+2 种基金the Korea-China Key Joint Research Program(2017K2A9A2A11070341)funded by the Ministry of Science and ICT,and by the 2019 Research Fund(1.190013.01)of UNISTsupport from‘‘Carbon to X Project”(Project No.2020M3H7A1098231)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea。
文摘The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.
基金supported from the Fundamental Research Funds for the Central Universities,HUST (2020kfyXJJS095)the National Natural Science Foundation of China (52203223 and 22279037)。
文摘Ionic liquids(ILs)have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries,owing to their negligible volatility,low-flammability,and high thermal stability,etc.The profound structural designability of IL cations and anions allows relatively facile regulations of their key physical(e.g.,viscosities,and ionic conductivities)and electrochemical(e.g.,anodic,and cathodic stabilities)properties,and therefore fulfills the critical requirements stipulated by various battery configurations.In this review,a historical overview on the development of ILs for nonaqueous electrolytes is provided,and the correlations between chemical structures and the basic properties of ILs are discussed.Furthermore,the key achievements in the field of IL-based electrolytes are scrutinized,including liquid electrolytes,polymer electrolytes,and composite polymer electrolytes.Based on literature reports and our previous work in this field,possible strategies to improve the performance of IL-based electrolytes and their rechargeable batteries are discussed.The present work not only provides the status quo in the development of IL-based electrolytes but also inspires the structural design of ILs for other kinds of rechargeable batteries(e.g.,sodium,potassium,zinc batteries).
基金supported by the International S&T Cooperation Program of China (2014DFA61670)the Key Program of National Natural Science Foundation of China (91434203)+1 种基金the International Cooperation and Exchange of the National Natural Science Foundation of China (51561145020)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010103)
文摘Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21905289 and 22005217)the Tianjin Sci.&Tech.Program(Grant No.20JCQNJC00440)+1 种基金the Young Elite Scientists Sponsorship Program by Tianjin(Grant No.TJSQNTJ-2017-05)the Incubation Program of Youth Innovation in Shandong Province,China.
文摘Lithium-sulfur(Li-S)battery has been considered as one of the most promising future batteries owing to the high theoretical energy density(2600 W-h-kg-1)and the usage of the inexpensive active materials(elemental sulfur).The recent progress in fundamental research and engineering of the Li-S battery,involved in electrode,electrolyte,membrane,binder,and current collector,has greatly promoted the performance of Li s batteries from the laboratory level to the approaching practical level.However,the safety concerns still deserve attention in the following application stage.This review focuses on the development of the electrolyte for Li S batteries from liquid state to solid state.Some problems and the corresponding solutions are emphasized,such as the soluble lithium polysulfides migration,ionic conductivity of electrolyte,the interface contact between electrolyte and electrode,and the reaction kinetics.Moreover,future perspectives of the safe and high-performance Li S batteries arealso introduced.
基金supported by the National Natural Science Foundation of China(Nos.52172180 and 51872026)the National Key R&D Program of China(No.2018YFB0104300).
文摘An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries.Herein,a comprehensive double-salt local high-concentration sulfolane-based electrolyte(DLi)is proposed with specific sheath structure to build stable interface on the LiNi_(0.8)Co_(0.1)Mn_(0.1O2)(NCM811)cathode at wide operating temperature between−60 and 55℃.Lithium perchlorate(LiClO_(4))in combination with high concentration lithium bis-(trifluoromethanesulfonyl)imide(LiTFSI)strengthens the internal interaction between anion and cation in the solvation structure,increasing Li+transference number of the electrolyte to 0.61.Moreover,the structure and component characteristics of the passive interface layer on NCM811 are modulated,decreasing desolvation energy of Li+ions,benefiting Li+transport dynamics especially at low temperature,and also ensuring the interfacial stability at a wide operating temperature range.As a result,the cathode with DLi exhibits excellent high-temperature storage performance and high capacity retention of 80.5%in 100 cycles at 55℃.Meanwhile,the Li||NCM811 cells can deliver high discharge capacity of 160.1,136.1,and 110.3 mAh·g^(−1)under current density of 0.1 C at−20,−40,and−60℃,maintaining 84.5%,71.8%,and 58.2%of the discharge capacity at 30℃,respectively.Moreover,it enables NCM811 cathode to achieve a reversible capacity of 142.8 mAh·g^(−1)in 200 cycles at−20℃and 0.2 C.Our studies shed light on the molecular strategy of wide operational temperature electrolyte for high nickel ternary cathode.
基金supported by the National Natural Science Foundation of China(U2001220)Key-Area Research and Development Program of Guangdong Province(2020B090919001)+2 种基金Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center(XMHT20200203006)Shenzhen Technical Plan Project(RCJC20200714114436091,JCYJ20180508152210821JCYJ20180508152135822)。
文摘Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly efficient Li-ion transfer for solid–liquid Li metal batteries.Understanding the ionic transport mechanisms in CLHEs and the corresponding role of ceramic electrolytes is crucial for a rational design strategy.Herein,the Li-ion transfer in the ceramic electrolytes of CLHEs was confirmed by tracking the 6Li and 7Li substitution behavior through solid-state nuclear magnetic resonance spectroscopy.The ceramic and liquid electrolytes simultaneously participate in Li-ion transport to achieve highly efficient Li-ion transfer in CLHEs.A spontaneous Li-ion exchange was also observed between ceramic and liquid electrolytes,which serves as a bridge that connects the ceramic and liquid electrolytes,thereby greatly strengthening the continuity of Li-ion pathways in CLHEs and improving the kinetics of Li-ion transfer.The importance of an abundant solid–liquid interface for CLHEs was further verified by the enhanced electrochemical performance in LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li batteries from the generated interface.This work provides a clear understanding of the Li-ion transport pathway in CLHEs that serves as a basis to build a universal Li-ion transport model of CLHEs.
基金funding support from the National Natural Science Foundation of China(52261135631,52103335)。
文摘With the increasing demand and striking upsurge in the price of lithium carbonate,sodium-ion batteries(SIBs)have gained significant attentions due to their abundance over lithium-ion batteries(LIBs).Some prototype SIBs have achieved great progress in terms of energy densities.Although SIBs show a relatively higher tolerance at the low temperature than LIBs due to the weaker cation–solvent interaction,the low-temperature performance of SIBs remains a critical challenge restricted by the electrolyte solidification and sluggish interphasial kinetics.In this review,we briefly cover the latest research progress in usable low-temperature electrolytes for SIBs.In the meantime,the mitigating mechanism and low-temperature performance of the electrolytes in different SIB configurations are also discussed.The merits and demerits of ether-based and carbonate-based electrolytes are compared to demonstrate their potential and limitations,thus providing application principles for ether-based and carbonate-based electrolytes at low temperatures to maximize their advantages.Furthermore,mitigation strategies for lowtemperature electrolytes are emphasized to guide the future electrolyte design.Finally,we provide some perspectives on the development of the low-temperature electrolytes for SIBs.
基金supported by National Natural Science Foundation of China (Nos.21774105 and 20923004)Chuying Plan Youth Topnotch Talents of Fujian Province,National Fund for Fostering Talents of Basic Science (No.J1310024)。
文摘Here, we report an observation that illustrate the potential of polyelectrolyte microgels in salt-free solutions to display a high ionic conductivity. Laser light scattering and ionic conductivity tests on very dilute aqueous dispersions of the microgels indicate that both small size and swollen state of gel particles play vital roles, which should favor the counterions to freely penetrate and leave gel particles, and thus can contribute to the ion-conducting property. Upon discovering this on microgels that are composed of imidazolium-based poly(ionic liquid), we also illustrate the generality of the finding to single lithium-ion polyelectrolyte microgels that are of more technically relevant features for applications, for instance, as injectable liquid “microgel-in-solution” electrolytes of high conductivity(ca. 8.2 × 10^(-2)S/m at 25.0 ℃ for1.0 × 10^(-2)g/m L of microgels in a LiNO_(3)-free 1:1 v/v mixture of 1,2-dioxolane and dimethoxymethane) and high lithium-ion transference number(0.87) for use in the rechargeable lithium-sulfur battery.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.52171198 and 51922099)Fundamental Research Funds for the Central Universities(Grant No.buctrc202104).
文摘In recent years,zinc-ion batteries(ZIBs)have been considered one of the most promising candidates for next-generation electrochemical energy storage systems due to their advantages of high safety,high specific capacity and high economic efficiency.As an indispensable component,the electrolyte has the function of connecting the cathode and the anode,and plays a key role in the performance of the battery.Different types of electrolytes have different effects on the performance of ZIBs,and the use of additives has further developed the research on modified electrolytes,thus effectively solving many serious problems faced by ZIBs.Therefore,to further explore the improvement of ZIBs by electrolyte engineering,it is necessary to summarize the current status of the design of various electrolyte additives,as well as their functions and mechanism in ZIBs.This paper analyzes the challenges faced by different electrolytes,reviews the different solutions of additives to solve battery problems in liquid electrolytes and solid electrolytes,and finally makes suggestions for the development of modified ZIB electrolytes.It is hoped that the review and strategies proposed in this paper will facilitate development of new electrolyte additives for ZIBs.
基金supported by the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202003)the State Key Laboratory of Physical Chemistry of Solid Surfaces(No.202116)Xiamen University,and Xiamen Institute of Rare Earth Materials XMIREM autonomously deployment project(No.2023CX05).
文摘In the development of new electrochemical concepts for the fabrication of high-energy-density batteries,fluorideion batteries(FIBs)have emerged as one of the valid candidates for the next generation electrochemical energy storage technologies,showing the potential to match or even surpass the current lithium-ion batteries(LIBs)in terms of energy density,safety without dendritic grains,and elimination of dependence on scarce lithium and cobalt resources.However,the development of FIBs is still in its infancy and their performance is far from satisfactory,with issues such as the lower fluoride-ion conductivity of the electrolytes and the reversibility of the electrodes hindering their commercialization.Previous reviews have mainly focused on inorganic solid electrolytes with a brief emphasis on the development of various fluoride-ion conductors and their ion-conducting properties.Therefore,this review summarizes the current developments in various electrolytes,a systematic overview of the current progress for various fluoride-ion electrolytes is presented by beginning with the history,structure and classification of FIBs,ion-transport mechanisms are briefly discussed.Recent advances in different classes of fluoride-ion electrolytes are described.The methods for optimizing the ionic conductivity characteristics of the fluoride-ion electrolytes are highlighted.Finally,an outlook on the future research direction of FIBs is given by highlighting some critical issues,challenges and prospects of fluoride-ion electrolytes.