Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production.However,the sluggish kinetics for the hydrogen evolution reaction(HER)under an ...Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production.However,the sluggish kinetics for the hydrogen evolution reaction(HER)under an alkaline medium causes a massive amount of energy losses,hindering large-scale production.Exploring efficient and low-cost catalyst candidates for large-scale H_(2) generation becomes a crucial demand.Single-atom catalysts(SACs)demonstrate great promise for enabling efficient alkaline HER catalysis at maximum atom utilization efficiency.In this review,we provide a comprehensive overview of the recent progress in SACs for the HER application in alkaline environments.The fundamentals of alkaline HER are first introduced,followed by a justification of the need to develop SACs.The rational design of the SACs including the inherent element property,coordination environment,SAC morphology,and SAC mass loading are highlighted.To facilitate the development of SACs for alkaline HER,we further propose the remaining challenges and perspectives in this research field.展开更多
Development of noble-metal-free materials with remarkable electrocatalytic water-splitting performance in acidic or neutral media has sparked considerable attention in recent years.Herein,we review the latest research...Development of noble-metal-free materials with remarkable electrocatalytic water-splitting performance in acidic or neutral media has sparked considerable attention in recent years.Herein,we review the latest research on design and fabrication of precious-metal-free catalytic materials for overall water electrolysis in non-alkaline environment,especially highlighting several optimizing approaches to enhance the catalytic behavior and to realize effective bifunctional electrocatalysts.All these involved noble-metal-free electrocatalysts are classified into transition-metal oxides(TMOs),transition-metal nitrides(TMNs),transition-metal carbides(TMCs),transition-metal phosphides(TMPs),transition-metal chalcogenides,metal complexes,and metal-free carbons,as shown in the main part.Besides,the paper also offers an introduction of the fundamental electrochemistry of water splitting before entering the subject,as well as a prospective discussion on mechanism understanding,novel catalysts fabrication,and standardized performance measurements/evaluation in the last section.展开更多
Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotenti...Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency.Up to date,Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts,but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices.As an attractive candidate for the Pt/Ir catalysts,series of Ru-based nanomaterials have aroused much attention for their low price,Pt-like hydrogen bond strength,and high EWS activity.In particular,Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts,which can not only achieve the dispersion and adjustment for active Ru sites,but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS.In this review,the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized,including Ru-doped metal organic frameworks(MOFs),Ru-doped porous organic polymers(POPs),and their derivatives.Meanwhile,detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review.Last but not least,the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.展开更多
基金This work was sup-ported by the Australian Research Council Discovery Projects(Grant Nos.ARC DP200103332 and ARC DP200103315)。
文摘Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production.However,the sluggish kinetics for the hydrogen evolution reaction(HER)under an alkaline medium causes a massive amount of energy losses,hindering large-scale production.Exploring efficient and low-cost catalyst candidates for large-scale H_(2) generation becomes a crucial demand.Single-atom catalysts(SACs)demonstrate great promise for enabling efficient alkaline HER catalysis at maximum atom utilization efficiency.In this review,we provide a comprehensive overview of the recent progress in SACs for the HER application in alkaline environments.The fundamentals of alkaline HER are first introduced,followed by a justification of the need to develop SACs.The rational design of the SACs including the inherent element property,coordination environment,SAC morphology,and SAC mass loading are highlighted.To facilitate the development of SACs for alkaline HER,we further propose the remaining challenges and perspectives in this research field.
基金M.Ni thanks the funding support(Project Number:PolyU 152214/17E and PolyU 152064/18E)from Research Grant Council,University Grants Committee,Hong Kong SAR。
文摘Development of noble-metal-free materials with remarkable electrocatalytic water-splitting performance in acidic or neutral media has sparked considerable attention in recent years.Herein,we review the latest research on design and fabrication of precious-metal-free catalytic materials for overall water electrolysis in non-alkaline environment,especially highlighting several optimizing approaches to enhance the catalytic behavior and to realize effective bifunctional electrocatalysts.All these involved noble-metal-free electrocatalysts are classified into transition-metal oxides(TMOs),transition-metal nitrides(TMNs),transition-metal carbides(TMCs),transition-metal phosphides(TMPs),transition-metal chalcogenides,metal complexes,and metal-free carbons,as shown in the main part.Besides,the paper also offers an introduction of the fundamental electrochemistry of water splitting before entering the subject,as well as a prospective discussion on mechanism understanding,novel catalysts fabrication,and standardized performance measurements/evaluation in the last section.
基金supported by the National Key Research and Development Program of China(No.2020YFB1506300)the National Natural Science Foundation of China(Nos.21971017,21922502,and 22075018)+2 种基金Young Elite Scientists Sponsorship Program by BAST(No.BYESS2023163)CNPC Innovation Found(No.2022DQ02-0606)Beijing Institute of Technology Research Fund Program.
文摘Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency.Up to date,Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts,but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices.As an attractive candidate for the Pt/Ir catalysts,series of Ru-based nanomaterials have aroused much attention for their low price,Pt-like hydrogen bond strength,and high EWS activity.In particular,Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts,which can not only achieve the dispersion and adjustment for active Ru sites,but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS.In this review,the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized,including Ru-doped metal organic frameworks(MOFs),Ru-doped porous organic polymers(POPs),and their derivatives.Meanwhile,detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review.Last but not least,the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.
基金financially supported by the National Natural Science Foundation of China(22075211,21601136,51971157,and 51621003)Tianjin Science Fund for Distinguished Young Scholars(19JCJQJC61800)。