Flexible and wearable electromagnetic interference(EMI)shielding material is one of the current research focuses in the field of EMI shielding.In this work,for the first time,WS_(2)-carbon fiber(WS_(2)-CF)composites a...Flexible and wearable electromagnetic interference(EMI)shielding material is one of the current research focuses in the field of EMI shielding.In this work,for the first time,WS_(2)-carbon fiber(WS_(2)-CF)composites are synthesized by implanting WS_(2),which has a multiphase structure and a large number of defects,onto the surface of carbon fiber(CF)by using a simple one-step hydrothermal method,and are applied to protect electronic devices from EMI.It is found that the EMI shielding performance of WS_(2)-CF is significantly improved,especially for those at Se and C-bands.At 2 GHz,the EMI shielding efficiency could reach 36.0 dB at a typical thickness of 3.00 mm of the composite,which is much better than that of pure CF(25.5 dB).Besides paving a novel avenue to optimize the electromagnetic shielding performance of flexible and wearable CF-based EMI shielding materials,which have great potential in the practical application for EMI shielding,this work provides a new paradigm for the design and synthesis of EMI shielding materials which have a broad application prospect.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No.52102368,51772160,51977009.China Postdoctoral Science Foundation(Grant No.2020M682029)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘Flexible and wearable electromagnetic interference(EMI)shielding material is one of the current research focuses in the field of EMI shielding.In this work,for the first time,WS_(2)-carbon fiber(WS_(2)-CF)composites are synthesized by implanting WS_(2),which has a multiphase structure and a large number of defects,onto the surface of carbon fiber(CF)by using a simple one-step hydrothermal method,and are applied to protect electronic devices from EMI.It is found that the EMI shielding performance of WS_(2)-CF is significantly improved,especially for those at Se and C-bands.At 2 GHz,the EMI shielding efficiency could reach 36.0 dB at a typical thickness of 3.00 mm of the composite,which is much better than that of pure CF(25.5 dB).Besides paving a novel avenue to optimize the electromagnetic shielding performance of flexible and wearable CF-based EMI shielding materials,which have great potential in the practical application for EMI shielding,this work provides a new paradigm for the design and synthesis of EMI shielding materials which have a broad application prospect.