In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1...In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1, where a is the characteristic size of the bodies and k is the wave number. This problem is solved asymptotically and numerical experiments are provided to illustrate the idea of the method. Error estimate for the asymptotic solution is also discussed.展开更多
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequenc...Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy ...In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy far field data.展开更多
Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will ...Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computgtional efficiency and can decrease memory consumed.展开更多
The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, th...The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, the multigrid method is extended to the application of solving integral equations which appear in electromagnetic scattering problems. The diakoptic theory is used for this purpose. Compared with other methods, the numerical results show that the multigrid method is powerful to solve electromagnetic scattering problems and can be used to compute electromagnetic scattering problems with electrically large bodies and complex structures.展开更多
A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic str...A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.展开更多
A hybrid technique is developed for the evaluation of two dimensional electromagnetic scattering from electrically large conducting bodies with cracks on their surfaces (TE case). The edge based finite element metho...A hybrid technique is developed for the evaluation of two dimensional electromagnetic scattering from electrically large conducting bodies with cracks on their surfaces (TE case). The edge based finite element method (FEM) is employed to compute the scattering from the cracks. Physical optics (PO) and physical theory of diffraction (PTD) are utilized to evaluate the scattering from the large bodies with the cracks filled with perfect conductors. These two methods are combined by an efficient coupling scheme. Some of numerical results are presented. It is shown that the hybrid technique has some advantages over other methods in regard to saving computer memory units and CPU time.展开更多
The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily....The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily. The total soluble salt content was interpreted by measurements made in the horizontal mode with EM38 and EM31. The electromagnetic induction (EM) surveys were made three times with the apparent soil electrical conductivity (ECa) measurements taken at 3 873 locations in Nov. 2008, 4 807 locations in Apr. 2009 and 6 324 locations in Nov. 2009, respectively. For interpreting the ECa measurements into total soluble salt content, calibtion sites were needed for EM survey of each time, e.g., 66 sites were selected in Nov. 2008 to measure ECa, and soils-core samples were taken by different depth layers of 0-10, 10-20 and 20-40 cm at the same time. On every time duplicate samples were taken at five sites to allevaite the local-scale variability, and soil temperatures in different layers through the profiles were also measured. Factors including TS, pH, water content, bulk density were analyzed by lab experiments. ECa calibration equations were obtained by linear regression analysis, which indicated that soil salinity was one primary concern to ECa with a determination coefficient of 0.792 in 0-10 cm layer, 0.711 in 10-20 cm layer and 0.544 in 20-40 cm layer, respectively. The maps of spatial distribution were predicted by Kriging interpolation, which showed that the high soil salinity was located near the drainage canal, which validated the trend effect caused by the irrigation canal and the drainage canal. And by comparing the soil salinity in different layers, the soluble salt accumulated to the top soil surface only in the area where the soil salinization was serious, and in the other areas, the soil salinity trended to increase from the top soil surface to 40 cm depth. Temporal changes showed that the soil salinity in November was higher than that in April, and the soil salinization trended to aggravate, especially in the top soil layer of 0-10 cm.展开更多
In this paper based on the equivalence principle and the reciprocity theorem, the scattered field up to second-order by two parallel 2D targets arbitrarily located in a Gaussian beam is considered. The first-order sol...In this paper based on the equivalence principle and the reciprocity theorem, the scattered field up to second-order by two parallel 2D targets arbitrarily located in a Gaussian beam is considered. The first-order solution can easily be obtained by calculating the scattered field from isolated targets when illuminated by a Gaussian beam. However, because of the difficulty in formulating the couple scattering field, it is almost impossible to find an analytical solution for the second-order scattered field if the shapes of 2D targets are not canonical geometries. In order to overcome this problem, in this paper, the second-order solution is derived by using the technique based on the reciprocity theorem and the equivalence principle. Meanwhile, the relation between the secondary scattered field from target #1 and target #2 is obtained. Specifically, the bi- and mono-static scattering of Gaussian beam by two parallel adjacent inhomogeneous plasma-coated conducting circular cylinders is calculated and the dependence of attenuation of the scattering width on the thickness of the coated layer, electron number density, collision frequency and radar frequency is discussed in detail.展开更多
The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The sca...The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction are derived. These fields in a particular case retrogress to those available in the literature. The obtained results have great potential in practical applications.展开更多
In the global climate system, the polar regions are sensitive indicators of climate change, in which sea ice plays an important role. Satellite remote sensing is a significant tool for monitoring sea ice. The use of s...In the global climate system, the polar regions are sensitive indicators of climate change, in which sea ice plays an important role. Satellite remote sensing is a significant tool for monitoring sea ice. The use of synthetic aperture radar(SAR) images to distinguish sea ice from sea water is one of the current research hotspots in this topic. To distinguish sea ice from the open sea, the polarization ratio characteristics of sea ice and sea water are studied for L-band and C-band radars, based on an electromagnetic scattering model of sea ice derived from the integral equation method(IEM) and the radiative transfer(RT) model. Numerical experiments are carried out based on the model and the results are given as follows. For L-band, the polarization ratio for sea water depends only on the incident angle, while the polarization ratio for sea ice is related to the incident angle and the ice thickness. For C-band, the sea water polarization ratio is influenced by the incident angle and the root mean square(RMS) height of the sea surface. For C-band, for small to medium incident angles,the polarization ratio for bare sea ice is mainly determined by the incident angle and ice thickness. When the incident angle increases, the RMS height will also affect the polarization ratio for bare sea ice. If snow covers the sea ice, then the polarization ratio for sea ice decreases and is affected by the RMS height of snow surface, snow thickness, volume fraction and the radius of scatterers. The results show that the sea ice and the open sea can be distinguished by using either L-band or C-band radar according to their polarization ratio difference. However, the ability of L-band to make this differentiation is higher than that of C-band.展开更多
Electromagnetic scattering from targets situated in half space is solved by applying fast inhomogeneous plane wave algorithm combined with a tabulation and interpolation method. The integral equation is set up based o...Electromagnetic scattering from targets situated in half space is solved by applying fast inhomogeneous plane wave algorithm combined with a tabulation and interpolation method. The integral equation is set up based on derivation of dyadic Green's functions in this environment. The coupling is divided into nearby region and well-separated region by grouping. The Green's function can be divided into two parts: primary term and reflected term. In the well-separated region, the two terms are both expressed as Sommerfeld integral, which can be accelerated by deforming integral path and taking interpolation and extrapolation. For the nearby region, the direct Sommerfeld integral makes the filling of impedance matrix time-expensive. A tabulation and interpolation method is applied to speed up this process. This infinite integral is pre-computed in sampling region, and a two-dimensional table is then set up. The impedance elements can then be obtained by interpolation. Numerical results demonstrate the accuracy and efficiency of this algorithm.展开更多
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHM...Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.展开更多
In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transp...In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.展开更多
In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem ...In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method is also provided.展开更多
Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical...Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.展开更多
This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the pol...This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.展开更多
Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep ...Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep experiments in which we have analyzed the contribution of water to the occurrence of electromagnetic radiation. The result shows that in the creep-fracturing course of rock samples, when the water content increases, the initial frequency and amplitude of electromagnetic and acoustic emission also increases, but at a decreasing growth rate caused by loading stress. This can be used as a criterion for the long-term stability of rock masses under conditions of repeated inundation and discharge of water.展开更多
Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis ...Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna.展开更多
文摘In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1, where a is the characteristic size of the bodies and k is the wave number. This problem is solved asymptotically and numerical experiments are provided to illustrate the idea of the method. Error estimate for the asymptotic solution is also discussed.
基金supported by the National Natural Science Foundation of China(62071473).
文摘Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
文摘In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy far field data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51477039 and 51207041the Program of Hefei Normal University under Grant Nos 2014136KJA04 and 2015TD01the Key Project of Provincial Natural Science Research of University of Anhui Province of China under Grant No KJ2015A174
文摘Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computgtional efficiency and can decrease memory consumed.
文摘The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, the multigrid method is extended to the application of solving integral equations which appear in electromagnetic scattering problems. The diakoptic theory is used for this purpose. Compared with other methods, the numerical results show that the multigrid method is powerful to solve electromagnetic scattering problems and can be used to compute electromagnetic scattering problems with electrically large bodies and complex structures.
基金Supported by the Aeronautical Science Foundation of China(20121852031)
文摘A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.
文摘A hybrid technique is developed for the evaluation of two dimensional electromagnetic scattering from electrically large conducting bodies with cracks on their surfaces (TE case). The edge based finite element method (FEM) is employed to compute the scattering from the cracks. Physical optics (PO) and physical theory of diffraction (PTD) are utilized to evaluate the scattering from the large bodies with the cracks filled with perfect conductors. These two methods are combined by an efficient coupling scheme. Some of numerical results are presented. It is shown that the hybrid technique has some advantages over other methods in regard to saving computer memory units and CPU time.
基金supported by the Special Fund of Industrial (Agriculture) Research for Public Welfare of China(200903001)the Special Fund of Industrial (Marine) Research for Public Welfare of China (201105020-3 and 201105020-4)+2 种基金the Science and Technology Support Program of Jiangsu Province, China (BE2010313)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-359)the National Natural Science Foundation of China (41171181)
文摘The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily. The total soluble salt content was interpreted by measurements made in the horizontal mode with EM38 and EM31. The electromagnetic induction (EM) surveys were made three times with the apparent soil electrical conductivity (ECa) measurements taken at 3 873 locations in Nov. 2008, 4 807 locations in Apr. 2009 and 6 324 locations in Nov. 2009, respectively. For interpreting the ECa measurements into total soluble salt content, calibtion sites were needed for EM survey of each time, e.g., 66 sites were selected in Nov. 2008 to measure ECa, and soils-core samples were taken by different depth layers of 0-10, 10-20 and 20-40 cm at the same time. On every time duplicate samples were taken at five sites to allevaite the local-scale variability, and soil temperatures in different layers through the profiles were also measured. Factors including TS, pH, water content, bulk density were analyzed by lab experiments. ECa calibration equations were obtained by linear regression analysis, which indicated that soil salinity was one primary concern to ECa with a determination coefficient of 0.792 in 0-10 cm layer, 0.711 in 10-20 cm layer and 0.544 in 20-40 cm layer, respectively. The maps of spatial distribution were predicted by Kriging interpolation, which showed that the high soil salinity was located near the drainage canal, which validated the trend effect caused by the irrigation canal and the drainage canal. And by comparing the soil salinity in different layers, the soluble salt accumulated to the top soil surface only in the area where the soil salinization was serious, and in the other areas, the soil salinity trended to increase from the top soil surface to 40 cm depth. Temporal changes showed that the soil salinity in November was higher than that in April, and the soil salinization trended to aggravate, especially in the top soil layer of 0-10 cm.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058), the National Defense Foundation of China and Graduate Innovation Fund, Xidian University.
文摘In this paper based on the equivalence principle and the reciprocity theorem, the scattered field up to second-order by two parallel 2D targets arbitrarily located in a Gaussian beam is considered. The first-order solution can easily be obtained by calculating the scattered field from isolated targets when illuminated by a Gaussian beam. However, because of the difficulty in formulating the couple scattering field, it is almost impossible to find an analytical solution for the second-order scattered field if the shapes of 2D targets are not canonical geometries. In order to overcome this problem, in this paper, the second-order solution is derived by using the technique based on the reciprocity theorem and the equivalence principle. Meanwhile, the relation between the secondary scattered field from target #1 and target #2 is obtained. Specifically, the bi- and mono-static scattering of Gaussian beam by two parallel adjacent inhomogeneous plasma-coated conducting circular cylinders is calculated and the dependence of attenuation of the scattering width on the thickness of the coated layer, electron number density, collision frequency and radar frequency is discussed in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 60171010), and the Education 0ffice of Shaaxi Province (Grant No 03JK070).
文摘The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction are derived. These fields in a particular case retrogress to those available in the literature. The obtained results have great potential in practical applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFC1401007)the Global Change Research Program of China(Grant No.2015CB953901)+1 种基金the National Natural Science Foundation of China(Grant No.41776181)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX18 1012)
文摘In the global climate system, the polar regions are sensitive indicators of climate change, in which sea ice plays an important role. Satellite remote sensing is a significant tool for monitoring sea ice. The use of synthetic aperture radar(SAR) images to distinguish sea ice from sea water is one of the current research hotspots in this topic. To distinguish sea ice from the open sea, the polarization ratio characteristics of sea ice and sea water are studied for L-band and C-band radars, based on an electromagnetic scattering model of sea ice derived from the integral equation method(IEM) and the radiative transfer(RT) model. Numerical experiments are carried out based on the model and the results are given as follows. For L-band, the polarization ratio for sea water depends only on the incident angle, while the polarization ratio for sea ice is related to the incident angle and the ice thickness. For C-band, the sea water polarization ratio is influenced by the incident angle and the root mean square(RMS) height of the sea surface. For C-band, for small to medium incident angles,the polarization ratio for bare sea ice is mainly determined by the incident angle and ice thickness. When the incident angle increases, the RMS height will also affect the polarization ratio for bare sea ice. If snow covers the sea ice, then the polarization ratio for sea ice decreases and is affected by the RMS height of snow surface, snow thickness, volume fraction and the radius of scatterers. The results show that the sea ice and the open sea can be distinguished by using either L-band or C-band radar according to their polarization ratio difference. However, the ability of L-band to make this differentiation is higher than that of C-band.
文摘Electromagnetic scattering from targets situated in half space is solved by applying fast inhomogeneous plane wave algorithm combined with a tabulation and interpolation method. The integral equation is set up based on derivation of dyadic Green's functions in this environment. The coupling is divided into nearby region and well-separated region by grouping. The Green's function can be divided into two parts: primary term and reflected term. In the well-separated region, the two terms are both expressed as Sommerfeld integral, which can be accelerated by deforming integral path and taking interpolation and extrapolation. For the nearby region, the direct Sommerfeld integral makes the filling of impedance matrix time-expensive. A tabulation and interpolation method is applied to speed up this process. This infinite integral is pre-computed in sampling region, and a two-dimensional table is then set up. The impedance elements can then be obtained by interpolation. Numerical results demonstrate the accuracy and efficiency of this algorithm.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802) and the Natural Science Foundation of Zhejiang Province (No. Y104539), China
文摘Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.
基金supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Project No.CityU 102204).
文摘In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.
文摘In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method is also provided.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100203110016)the Fundamental Research Funds for the Central Universities,China (Grant No. K50510070001)
文摘Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20070701010)
文摘This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.
基金Projects 50674083 supported by the National Natural Science Foundation of China 50474063 by the Science & Technology Foundation of Ministry of Education
文摘Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep experiments in which we have analyzed the contribution of water to the occurrence of electromagnetic radiation. The result shows that in the creep-fracturing course of rock samples, when the water content increases, the initial frequency and amplitude of electromagnetic and acoustic emission also increases, but at a decreasing growth rate caused by loading stress. This can be used as a criterion for the long-term stability of rock masses under conditions of repeated inundation and discharge of water.
基金supported by National Natural Science Foundation of China(No.51107033)the Fundamental Research Funds for the Central Universities,China(No.2013B33614)
文摘Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna.