An absorbing material–conductor laminate is widely used for electromagnetic compatibility of electronic circuits at microwave frequencies. Such a laminate when properly designed will exhibit good results in terms of ...An absorbing material–conductor laminate is widely used for electromagnetic compatibility of electronic circuits at microwave frequencies. Such a laminate when properly designed will exhibit good results in terms of electromagnetic interference and compatibility. In this paper, microwave absorbing materials like 1) Ca-NiTi hexa ferrite composites (Ca (NiTi)x Fe12-2xO19) for x = 0.4, 2) M-Type Barium ferrites (BaFe12-2xAxCoxO19 for the tetravalent A ions, Ru4+ is chosen), 3) MnZn ferrite-Rubber composites with volume fraction vf = 0.4, 4) Carbonyl-Iron particle composites with volume fraction vf = 40% and conducting materials like copper, stainless steel are considered to form the interface in the laminate. Mathematical formulations are carried out for the estimation of reflectivity and shielding effectiveness of absorbing material–conductor laminate at microwave frequencies Analysis is also carried out for various thicknesses of the microwave absorbing material and conducting material in the laminate. The reflectivity and shielding effectiveness depends not only on the type of the selected material in the laminate, but also their thickness in the laminate and frequency of operation.展开更多
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl...The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.展开更多
Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network ana...Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.展开更多
The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall los...The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integr...Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.展开更多
Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyet...Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source...Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.展开更多
The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on...The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.展开更多
In this paper, a solution for electromagnetic compatibility guarantee based on the combination of metal shielding and circuit components distance estimation methods is presented. The electromagnetic noises generated f...In this paper, a solution for electromagnetic compatibility guarantee based on the combination of metal shielding and circuit components distance estimation methods is presented. The electromagnetic noises generated from a working radio-electronic unit can expand into the space and act on other around radio-electronic units. An EMC guaranteed radio-electronic unit by the suitable technique method will not cause the electromagnetic noise to others. In opposition, it will not be under electromagnetic action from another one. Due to the power of electromagnetic noise, the metal shielding, distance estimation or other technique methods should be used to guarantee EMC. Every method has own advantage as so as weakness for detail radio-electronic unit, so it is necessary to choose a suitable method to guarantee EMC for them, the combination of metal shielding and distance estimation is a choice, for example. The proposed solution has been evaluated by using CST (Computer Simulation Technology) software and EMxpertEHX analyzer in oscillator circuit context. The simulated results on CST show that the proposed solution decreases the electromagnetic radiation about of 39.1 dB at frequency 500 MHz in comparison to results when nothing electromagnetic compatibility methods are not used. The experimental results on the oscillator circuit are presented. The electromagnetic radiation reduction of the oscillator circuit is about of (25 - 30) dB. In comparison to individual metal shielding and distance estimation methods, the effectiveness of the proposed solution for electromagnetic compatibility guarantee is significantly increased.展开更多
To characterize the shielding effectiveness(SE) of materials against electromagnetic pulse(EMP) that cannot be adequately evaluated by traditional test methods,a transfer function model of SE is proposed.Using homemad...To characterize the shielding effectiveness(SE) of materials against electromagnetic pulse(EMP) that cannot be adequately evaluated by traditional test methods,a transfer function model of SE is proposed.Using homemade broadband coaxial fixture,the SE of a metal fabric material against square-pulse and electrostatic discharge(ESD) EMP is tested in the time domain.The peak SE calculated from the test results matches well with that obtained theoretically.Based on the system identification theory,we propose the transfer function model of SE,which takes the square pulse and human body model ESD EMP data obtained in the tests as training data and takes the machine model as verification data,as well as a second-order expression of the transfer function.Using the transfer function model,the waveforms of the shield-penetrated square-pulse EMP and the ESD EMP are actually predicted.From the perspective of system identification,this accurate prediction of the shielded waveform of EMP provides a reliable way for evaluating SE of materials against EMP.展开更多
Carbon microcoils were deposited onto Al2O3 substrates using C2H2/H2 as source gases and SF6 as an incorporated additive gas in a thermal chemical vapor deposition system. At as-grown state, the carbon coils (d-CCs) s...Carbon microcoils were deposited onto Al2O3 substrates using C2H2/H2 as source gases and SF6 as an incorporated additive gas in a thermal chemical vapor deposition system. At as-grown state, the carbon coils (d-CCs) show the diverse geometry. The geometry-controlled carbon microcoils (g-CMCs) could be obtained by manipulating the injection time of SF6 in C2H2 source gas. The d-CCs with polyurethane (PU) composite (d-CC@PU) and the g-CMCs with PU composite (g-CMC@PU) were obtained by dispersing d-CCs and g-CMCs in PU, respectively. The electromagnetic wave shielding properties of d-CC@PU and g-CMC@PU composites were investigated in the frequency range of 0.25 - 4.0 GHz. The shielding effectiveness (SE) of d-CC@PU and g-CMC@PU composites were measured and discussed according to the weight percent of d-CCs and g-CMCs in the composites with the thickness of the composites layers. On the whole frequency range in this work, the SE of g-CMC@PU composites was higher than those of d-CC@PU composites, irrespective of the weight percent of carbon coils in the composites and the layer thickness. Furthermore, we confirmed that the absorption mechanism, instead of the reflection mechanism, seemed to play the critical role to shield the EMI for not only the g-CMC@PU composites but also the d-CC@PU composites.展开更多
Owing to health and security hazards posed by concentration of EMR (electromagnetic radiations) from wireless transmission devices such as antennas and WiFi, it is time for building specialists to consider EMR shieldi...Owing to health and security hazards posed by concentration of EMR (electromagnetic radiations) from wireless transmission devices such as antennas and WiFi, it is time for building specialists to consider EMR shielding in general designs. Such a venture needs understanding of shielding behavior of various building materials in their isolated and combined forms. While shielding properties of several industrial materials are known, much remains to be understood from traditional materials. This article contributes to the knowledge of SE (shielding effectiveness) of the latter materials. It has tested the buildings of the 19th CE STZ (Stone Town of Zanzibar). The coral stones, mud, and mangrove pole buildings of this historic town were found to be effective in shielding the radiations, nearly the same as renowned buildings of the Roman Empire.展开更多
Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electroma...Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.展开更多
Electromagnetic waves generated by electronic equipment are widely present in all living and working spaces because of the rapid development of electronic products and frequent use of digital systems.Electromagnetic s...Electromagnetic waves generated by electronic equipment are widely present in all living and working spaces because of the rapid development of electronic products and frequent use of digital systems.Electromagnetic shielding is an effective method of protection against these waves.Therefore,the demand for materials with high electromagnetic shielding properties has remarkably increased.Magnesium(Mg)alloys,as potential electromagnetic shielding materials,have sparked great interest worldwide.This review highlights the effects of grain size,texture,alloying elements and second phase on the shielding properties of Mg alloys.Recent progress on the shielding properties of Mg–Zn,Mg–Al,Mg–RE and other new shielding Mg alloys is then summarised,and the successful design of Mg alloys with superior electromagnetic shielding properties,such as Mg–Zn–Y–Ce–Zr,Mg–Sn–Zn–Ca–Ce,Mg–Gd–Y–Zn–Zr and Mg-based composite materials,is described.Finally,this review provides insights into the future development and applications of Mg alloys with superior shielding properties.展开更多
An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on...An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.展开更多
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly invol...A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.展开更多
A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy ...A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.展开更多
文摘An absorbing material–conductor laminate is widely used for electromagnetic compatibility of electronic circuits at microwave frequencies. Such a laminate when properly designed will exhibit good results in terms of electromagnetic interference and compatibility. In this paper, microwave absorbing materials like 1) Ca-NiTi hexa ferrite composites (Ca (NiTi)x Fe12-2xO19) for x = 0.4, 2) M-Type Barium ferrites (BaFe12-2xAxCoxO19 for the tetravalent A ions, Ru4+ is chosen), 3) MnZn ferrite-Rubber composites with volume fraction vf = 0.4, 4) Carbonyl-Iron particle composites with volume fraction vf = 40% and conducting materials like copper, stainless steel are considered to form the interface in the laminate. Mathematical formulations are carried out for the estimation of reflectivity and shielding effectiveness of absorbing material–conductor laminate at microwave frequencies Analysis is also carried out for various thicknesses of the microwave absorbing material and conducting material in the laminate. The reflectivity and shielding effectiveness depends not only on the type of the selected material in the laminate, but also their thickness in the laminate and frequency of operation.
基金supported by the National Key R&D Program of China(2023YFB4603504)the International Science&Technology Innovation Cooperation Project of Sichuan Province(2024YFHZ0232)+2 种基金the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University(2020SCUNG203)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019).
文摘The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.
基金Project supported by Anhui Province Natural Science Foundation (050440603)
文摘Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.
基金supported by the National Natural Science Foundation of China(Grant No.51037001)
文摘The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金supported by grants from the Basic Science Research Program(2021M3H4A1A03047327 and 2022R1A2C3006227)through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planningthe Fundamental R&D Program for Core Technology of Materials and the Industrial Strategic Technology Development Program(20020855),funded by the Ministry of Trade,Industry,and Energy,Republic of Korea+2 种基金the National Research Council of Science&Technology(NST),funded by the Korean Government(MSIT)(CRC22031-000)partially supported by POSCO and Hyundai Mobis,a start-up fund(S-2022-0096-000)the Postdoctoral Research Program of Sungkyunkwan University(2022).
文摘Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
文摘Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975263)the National Key R&D Program of China(No.2017YFE0300101)。
文摘Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.
基金This study is supported by Shaanxi Provincial Laboratory of Functional Textiles and Academy Laboratory of Xi’an University of Engineer-ing Science and Technology in Xi’an city ,P.R.Chian
文摘The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.
文摘In this paper, a solution for electromagnetic compatibility guarantee based on the combination of metal shielding and circuit components distance estimation methods is presented. The electromagnetic noises generated from a working radio-electronic unit can expand into the space and act on other around radio-electronic units. An EMC guaranteed radio-electronic unit by the suitable technique method will not cause the electromagnetic noise to others. In opposition, it will not be under electromagnetic action from another one. Due to the power of electromagnetic noise, the metal shielding, distance estimation or other technique methods should be used to guarantee EMC. Every method has own advantage as so as weakness for detail radio-electronic unit, so it is necessary to choose a suitable method to guarantee EMC for them, the combination of metal shielding and distance estimation is a choice, for example. The proposed solution has been evaluated by using CST (Computer Simulation Technology) software and EMxpertEHX analyzer in oscillator circuit context. The simulated results on CST show that the proposed solution decreases the electromagnetic radiation about of 39.1 dB at frequency 500 MHz in comparison to results when nothing electromagnetic compatibility methods are not used. The experimental results on the oscillator circuit are presented. The electromagnetic radiation reduction of the oscillator circuit is about of (25 - 30) dB. In comparison to individual metal shielding and distance estimation methods, the effectiveness of the proposed solution for electromagnetic compatibility guarantee is significantly increased.
基金Project supported by National Natural Science Foundation of China (51277181 51177174)
文摘To characterize the shielding effectiveness(SE) of materials against electromagnetic pulse(EMP) that cannot be adequately evaluated by traditional test methods,a transfer function model of SE is proposed.Using homemade broadband coaxial fixture,the SE of a metal fabric material against square-pulse and electrostatic discharge(ESD) EMP is tested in the time domain.The peak SE calculated from the test results matches well with that obtained theoretically.Based on the system identification theory,we propose the transfer function model of SE,which takes the square pulse and human body model ESD EMP data obtained in the tests as training data and takes the machine model as verification data,as well as a second-order expression of the transfer function.Using the transfer function model,the waveforms of the shield-penetrated square-pulse EMP and the ESD EMP are actually predicted.From the perspective of system identification,this accurate prediction of the shielded waveform of EMP provides a reliable way for evaluating SE of materials against EMP.
文摘Carbon microcoils were deposited onto Al2O3 substrates using C2H2/H2 as source gases and SF6 as an incorporated additive gas in a thermal chemical vapor deposition system. At as-grown state, the carbon coils (d-CCs) show the diverse geometry. The geometry-controlled carbon microcoils (g-CMCs) could be obtained by manipulating the injection time of SF6 in C2H2 source gas. The d-CCs with polyurethane (PU) composite (d-CC@PU) and the g-CMCs with PU composite (g-CMC@PU) were obtained by dispersing d-CCs and g-CMCs in PU, respectively. The electromagnetic wave shielding properties of d-CC@PU and g-CMC@PU composites were investigated in the frequency range of 0.25 - 4.0 GHz. The shielding effectiveness (SE) of d-CC@PU and g-CMC@PU composites were measured and discussed according to the weight percent of d-CCs and g-CMCs in the composites with the thickness of the composites layers. On the whole frequency range in this work, the SE of g-CMC@PU composites was higher than those of d-CC@PU composites, irrespective of the weight percent of carbon coils in the composites and the layer thickness. Furthermore, we confirmed that the absorption mechanism, instead of the reflection mechanism, seemed to play the critical role to shield the EMI for not only the g-CMC@PU composites but also the d-CC@PU composites.
文摘Owing to health and security hazards posed by concentration of EMR (electromagnetic radiations) from wireless transmission devices such as antennas and WiFi, it is time for building specialists to consider EMR shielding in general designs. Such a venture needs understanding of shielding behavior of various building materials in their isolated and combined forms. While shielding properties of several industrial materials are known, much remains to be understood from traditional materials. This article contributes to the knowledge of SE (shielding effectiveness) of the latter materials. It has tested the buildings of the 19th CE STZ (Stone Town of Zanzibar). The coral stones, mud, and mangrove pole buildings of this historic town were found to be effective in shielding the radiations, nearly the same as renowned buildings of the Roman Empire.
基金The research was supported by the National Natural Science Foundation of China (30571454). Natural Science Foundation of Heilongjiang Province (C0210) and Harbin City Youth Science Faud (2004AFQXJ027).
文摘Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.
基金the financial supports from the National Natural Science Foundation of China(52171103)Fundamental Research Funds for the Central Universities(2020CDJDPT001 and cqu2018CDHB1A08)+3 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxm X0505)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202101234)Opened-end Foundation of Chongqing Light Alloy Materials and Processing Engineering Technology Research Center(GCZX201902)
文摘Electromagnetic waves generated by electronic equipment are widely present in all living and working spaces because of the rapid development of electronic products and frequent use of digital systems.Electromagnetic shielding is an effective method of protection against these waves.Therefore,the demand for materials with high electromagnetic shielding properties has remarkably increased.Magnesium(Mg)alloys,as potential electromagnetic shielding materials,have sparked great interest worldwide.This review highlights the effects of grain size,texture,alloying elements and second phase on the shielding properties of Mg alloys.Recent progress on the shielding properties of Mg–Zn,Mg–Al,Mg–RE and other new shielding Mg alloys is then summarised,and the successful design of Mg alloys with superior electromagnetic shielding properties,such as Mg–Zn–Y–Ce–Zr,Mg–Sn–Zn–Ca–Ce,Mg–Gd–Y–Zn–Zr and Mg-based composite materials,is described.Finally,this review provides insights into the future development and applications of Mg alloys with superior shielding properties.
基金Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province,China(No.MTC2021-02)。
文摘An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA03Z461)the National Defense Fundamental Scientific Research Program (No. A1420080185)
文摘A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.
基金supported by the National Natural Science Foundation of China(Nos.50977042 and 10904061)the“863”program of MSTC(No.2006AA03Z458)the research funds for Nanjing Institute of Technology(No.YKJ201002)
文摘A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.