Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water e...Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth.展开更多
In order to solve the problem of electromagnetic scattering by a dielectric-coated conducting circular cylinder, the total field excited by an electric and amagnetic dipoles exterior to the cylinder is derived in term...In order to solve the problem of electromagnetic scattering by a dielectric-coated conducting circular cylinder, the total field excited by an electric and amagnetic dipoles exterior to the cylinder is derived in terms of dyadic Green's function (DGF) technique. Then, the scattering problem can be solved on basis of the relation between the total and the scattered. field. The solution of the scattered field can be obtained directly from the general formula of the scattered field as the cylinder is illuminated by a spherical wave. For a plane wave of arbitrary polarization incident to the cylinder from the direction (theta-0, phi-0), the scattered field can be given by the solution of the scattered field with a spherical wave incident as the center of the spherical wave moves to infinity. For an astigmatic wave incident to the cylinder, the scattered field can be derived by superposing or integrating of the scattered field with the special spherical wave incident.展开更多
A systematic approach to the design of the conducted electromagnetic interference (EMI) filter of high-density plasma cutting power supply has been developed. Converter components have been accurately modeled, with ...A systematic approach to the design of the conducted electromagnetic interference (EMI) filter of high-density plasma cutting power supply has been developed. Converter components have been accurately modeled, with parasitic elements extracted to reveal their impacts on the EMI noises. Circuit simulations have been used to analyze and minimize the EMI noises. Conducted EMI noise measurement and filter design of this power supply have been achieved which successfully satisfy the FCC class B limits in the frequency range from 150 kHz to 30 MHz. The analyses and experimental results show that the designed filter guarantees that the required attenuation will be achieved.展开更多
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-406-3)the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2005CB121108).
文摘Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth.
文摘In order to solve the problem of electromagnetic scattering by a dielectric-coated conducting circular cylinder, the total field excited by an electric and amagnetic dipoles exterior to the cylinder is derived in terms of dyadic Green's function (DGF) technique. Then, the scattering problem can be solved on basis of the relation between the total and the scattered. field. The solution of the scattered field can be obtained directly from the general formula of the scattered field as the cylinder is illuminated by a spherical wave. For a plane wave of arbitrary polarization incident to the cylinder from the direction (theta-0, phi-0), the scattered field can be given by the solution of the scattered field with a spherical wave incident as the center of the spherical wave moves to infinity. For an astigmatic wave incident to the cylinder, the scattered field can be derived by superposing or integrating of the scattered field with the special spherical wave incident.
基金National Natural Science Foundation of China (No. 50477009)
文摘A systematic approach to the design of the conducted electromagnetic interference (EMI) filter of high-density plasma cutting power supply has been developed. Converter components have been accurately modeled, with parasitic elements extracted to reveal their impacts on the EMI noises. Circuit simulations have been used to analyze and minimize the EMI noises. Conducted EMI noise measurement and filter design of this power supply have been achieved which successfully satisfy the FCC class B limits in the frequency range from 150 kHz to 30 MHz. The analyses and experimental results show that the designed filter guarantees that the required attenuation will be achieved.