A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlin...A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlinear energy harvesters(NEHs).The governing equation is derived,and a second-order discrete system is used to assess the performance of the developed device.The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency,reaching up to 95%,over a wider frequency range.Additionally,it successfully harvests additional electric energy.This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum.展开更多
This study presents a novel enhanced monostable lever-type electromagnetic energy harvester(L-EEH).According to the positions of the coil and the lever pivot,four configurations are discussed to realize a better harve...This study presents a novel enhanced monostable lever-type electromagnetic energy harvester(L-EEH).According to the positions of the coil and the lever pivot,four configurations are discussed to realize a better harvesting performance of the L-EEHs.On the basis of establishing the theoretical model of the L-EEH,the corresponding analytical solutions can be obtained by applying the harmonic balance method.The effects of the nonlinear coefficient,the lever ratio,the mass ratio,and the circuit parameters on the energy harvesting performance of L-EEHs are analyzed and discussed.The numerical and experimental efforts are carried out to verify the theoretical model and the energy harvesting performance.The results demonstrate that the maximum output voltage can be achieved with an appropriate lever ratio.Furthermore,the L-EEH possesses a considerable energy harvesting performance under a smaller lever ratio compared with the other three configurations.The output power can also be improved by adjusting the tip mass of the lever.The proposed L-EEH has a considerable operating bandwidth and an output power,which can reach 146.6 mW under the excitation amplitude of 0.3 g.展开更多
In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that...In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.展开更多
With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoele...With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoelectric-and triboelectricbased sensors have low current output and are easily affected,while electromagnetic-based sensors are difficult to miniaturize.This work proposes a high-density stacked microcoil integrated microminiaturized electromagnetic vibration energy harvester(EVEH).The double-layer high-density microcoil is fabricated on both sides of the flexible polyimide substrate interconnected via the central through-hole.Owing to reduced single coil line width,line spacing,and stacked structure,the number of turns can be substantially enhanced.Moreover,the relative position of the coils and magnet has a considerable influence on the performances;due to the huge change rate in magnetic flux when the coil is placed in the radial direction of the magnet than in the axial direction,the open-circuit voltage in the radial direction is 10 times greater.The microcoil can maintain good performance at high,low temperatures and under bending conditions.When the distance between the ends of the coil changes from 2 to 20 mm in 2 mm steps,the bending angle of the coil changes from 45°to 270°in 45°steps;furthermore,when the coil is exposed to-40and 60℃conditions,the coil resistance is maintained at approximately 447Ω.The peak open-circuit voltage of three-piece microcoils reaches 0.41 V at 4 Hz under 2g,and the output voltage and current increase with an increasing number of stacked layers.These excellent properties indicate that EVEH can be used for self-powered acceleration sensing.The sensitivity is measured to be 0.016 V/(m/s^(2))with a correlation coefficient of 0.979 over the acceleration range of 1–18 m/s^(2).Thus,the developed microminiaturized EVEH has enormous potential for self-powered sensing applications in confined spaces and harsh environments.展开更多
This paper presents a new micro electromagnetic energy harvester that can convert transverse vibration energy to electrical power.It mainly consists of folded beams,a permanent magnet and copper planar coils.The calcu...This paper presents a new micro electromagnetic energy harvester that can convert transverse vibration energy to electrical power.It mainly consists of folded beams,a permanent magnet and copper planar coils.The calculated value of the natural frequency is 274 Hz and electromagnetic simulation shows that the magnetic flux density will decrease sharply with increasing space between the magnet and coils.A prototype has been fabricated using MEMS micromachining technology.The testing results show that at the resonant frequency of 242 Hz,the prototype can generate 0.55μW of maximal output power with peak-peak voltage of 28 m V for 0.5g(g = 9.8 m/s^2) external acceleration.展开更多
A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined phot...A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined photoresist molds or metal molds,and formed into resin-bonded magnets after curing at room temperature.A coercivity of 772.4 kA/m,a remanence of 0.27 T,and a maximum energy product of 22.6 kJ/m3 have been achieved in an NdFeB disk micromagnet with dimensions of Ф200 μm×70 μm.Based on the developed micro-patterning of resin-bonded magnets,a fully integrated electromagnetic vibration energy harvester has been designed and fabricated.The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm,and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm.This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.展开更多
Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for p...Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2022YFC3002502)。
文摘A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlinear energy harvesters(NEHs).The governing equation is derived,and a second-order discrete system is used to assess the performance of the developed device.The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency,reaching up to 95%,over a wider frequency range.Additionally,it successfully harvests additional electric energy.This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum.
基金Project supported by the National Natural Science Foundation of China(No.52175125)。
文摘This study presents a novel enhanced monostable lever-type electromagnetic energy harvester(L-EEH).According to the positions of the coil and the lever pivot,four configurations are discussed to realize a better harvesting performance of the L-EEHs.On the basis of establishing the theoretical model of the L-EEH,the corresponding analytical solutions can be obtained by applying the harmonic balance method.The effects of the nonlinear coefficient,the lever ratio,the mass ratio,and the circuit parameters on the energy harvesting performance of L-EEHs are analyzed and discussed.The numerical and experimental efforts are carried out to verify the theoretical model and the energy harvesting performance.The results demonstrate that the maximum output voltage can be achieved with an appropriate lever ratio.Furthermore,the L-EEH possesses a considerable energy harvesting performance under a smaller lever ratio compared with the other three configurations.The output power can also be improved by adjusting the tip mass of the lever.The proposed L-EEH has a considerable operating bandwidth and an output power,which can reach 146.6 mW under the excitation amplitude of 0.3 g.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171414,U2341210,52175554,and 52205608)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123059,and 20210302124610)+1 种基金the Hebei Province Central Guiding Local Science and Technology Development Fund Project(Grant No.236Z4901G)the National Defense Fundamental Research Project。
文摘In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFE0120300)the National Natural Science Foundation of China(Grant Nos.52175554,62171414,52205608)+1 种基金the Fundamental Research Program of Shanxi Province(Grant No.202103021223201)the Young Top Talent Project of Hebei Provincial Department of Education(Grant No.BJK2023116)。
文摘With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoelectric-and triboelectricbased sensors have low current output and are easily affected,while electromagnetic-based sensors are difficult to miniaturize.This work proposes a high-density stacked microcoil integrated microminiaturized electromagnetic vibration energy harvester(EVEH).The double-layer high-density microcoil is fabricated on both sides of the flexible polyimide substrate interconnected via the central through-hole.Owing to reduced single coil line width,line spacing,and stacked structure,the number of turns can be substantially enhanced.Moreover,the relative position of the coils and magnet has a considerable influence on the performances;due to the huge change rate in magnetic flux when the coil is placed in the radial direction of the magnet than in the axial direction,the open-circuit voltage in the radial direction is 10 times greater.The microcoil can maintain good performance at high,low temperatures and under bending conditions.When the distance between the ends of the coil changes from 2 to 20 mm in 2 mm steps,the bending angle of the coil changes from 45°to 270°in 45°steps;furthermore,when the coil is exposed to-40and 60℃conditions,the coil resistance is maintained at approximately 447Ω.The peak open-circuit voltage of three-piece microcoils reaches 0.41 V at 4 Hz under 2g,and the output voltage and current increase with an increasing number of stacked layers.These excellent properties indicate that EVEH can be used for self-powered acceleration sensing.The sensitivity is measured to be 0.016 V/(m/s^(2))with a correlation coefficient of 0.979 over the acceleration range of 1–18 m/s^(2).Thus,the developed microminiaturized EVEH has enormous potential for self-powered sensing applications in confined spaces and harsh environments.
基金Project supported by the Young Innovation Project ofSIMIT(No.2010QNCX01)
文摘This paper presents a new micro electromagnetic energy harvester that can convert transverse vibration energy to electrical power.It mainly consists of folded beams,a permanent magnet and copper planar coils.The calculated value of the natural frequency is 274 Hz and electromagnetic simulation shows that the magnetic flux density will decrease sharply with increasing space between the magnet and coils.A prototype has been fabricated using MEMS micromachining technology.The testing results show that at the resonant frequency of 242 Hz,the prototype can generate 0.55μW of maximal output power with peak-peak voltage of 28 m V for 0.5g(g = 9.8 m/s^2) external acceleration.
基金Project supported by the National Natural Science Foundation of China (No. 51007001)the 211 Project of Anhui Universitythe Start Up Grant for Doctor’s Research of Anhui University,China
文摘A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined photoresist molds or metal molds,and formed into resin-bonded magnets after curing at room temperature.A coercivity of 772.4 kA/m,a remanence of 0.27 T,and a maximum energy product of 22.6 kJ/m3 have been achieved in an NdFeB disk micromagnet with dimensions of Ф200 μm×70 μm.Based on the developed micro-patterning of resin-bonded magnets,a fully integrated electromagnetic vibration energy harvester has been designed and fabricated.The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm,and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm.This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.
基金supported by the National Key R&D Program of China (Grant No.2019YFE0120300)the National Natural Science Foundation of China (Grant Nos.62171414,52175554,52205608,62171415 and62001431)+1 种基金the Fundamental Research Program of Shanxi Province (Grant Nos.20210302123059 and 20210302124610)the Program for the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2020L0316)。
文摘Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.