Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has ...Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has been proposed[Phys.Rev.Lett.107174802(2011)].Compared with EVBs,except for orbital angular momentum,an REVB has intrinsic relativistic effect,i.e.,spin angular momentum and spin-orbit coupling.We study the electromagnetic field of an REVB analytically.We show that the electromagnetic field can be separated into two parts,one is only related to orbital quantum number,and the other is related to spin-orbit coupling effect.Exploiting this separation property,the difference between the electromagnetic fields of the REVB in spin-up and spin-down states can be used as a demonstration of the relativistic quantum effect.The linear momentum and angular momentum of the generated electromagnetic field have been further studied and it is shown that the linear momentum is weakly dependent on the spin state;while the angular momentum is evidently dependent on the spin state and linearly increases with the topological charge of electron vortex beam.The electromagnetic and mechanical properties of the REVB could be useful for studying the interaction between REVBs and materials.展开更多
We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hyp...We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hypothesis, which can be applied to understand both the flight of the boomerang as well as celestial mechanics. The boomerang is a particularly significant, intriguing and widely known case of bodies in rotation. We have analyzed the velocity and acceleration fields generated when rigid bodies are exposed to successive torques, in order to assess new criteria for this speed coupling. In this context, reactions and inertial fields that cannot be justified by means of classical mechanics take place. Accordingly, we propose a new Theory of Dynamic Interactions. We believe that the results obtained will enable us to conceive a new perspective in dynamics, unknown to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area in non-inertial dynamics systems subject to rotational accelerations. The aim of this paper is to present information of the surprising results obtained and to attract interest in research into dynamic field systems accelerated by rotation, and the multiple and remarkable scientific applications arising thereof. We further propose the boomerang as a clear example of the application of the Theory of Dynamic Interactions.展开更多
On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneou...On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. I proposed the boomerang as a paradigmatic example of bodies in rotation. Accordingly, I propose a new Theory of Dynamic Interactions. The aim of this paper is to present an audiovisual of the Theory of Dynamic Interactions, and the dynamic behavior of the boomerang, as an extension of the referred paper, asserting that the boomerang is a clear example of the application of this theory.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11574085,91536218,and 11834003)the 111 Project,China(Grant No.B12024)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFA0304201)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.2019-01-07-00-05-E00079)。
文摘Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has been proposed[Phys.Rev.Lett.107174802(2011)].Compared with EVBs,except for orbital angular momentum,an REVB has intrinsic relativistic effect,i.e.,spin angular momentum and spin-orbit coupling.We study the electromagnetic field of an REVB analytically.We show that the electromagnetic field can be separated into two parts,one is only related to orbital quantum number,and the other is related to spin-orbit coupling effect.Exploiting this separation property,the difference between the electromagnetic fields of the REVB in spin-up and spin-down states can be used as a demonstration of the relativistic quantum effect.The linear momentum and angular momentum of the generated electromagnetic field have been further studied and it is shown that the linear momentum is weakly dependent on the spin state;while the angular momentum is evidently dependent on the spin state and linearly increases with the topological charge of electron vortex beam.The electromagnetic and mechanical properties of the REVB could be useful for studying the interaction between REVBs and materials.
文摘We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hypothesis, which can be applied to understand both the flight of the boomerang as well as celestial mechanics. The boomerang is a particularly significant, intriguing and widely known case of bodies in rotation. We have analyzed the velocity and acceleration fields generated when rigid bodies are exposed to successive torques, in order to assess new criteria for this speed coupling. In this context, reactions and inertial fields that cannot be justified by means of classical mechanics take place. Accordingly, we propose a new Theory of Dynamic Interactions. We believe that the results obtained will enable us to conceive a new perspective in dynamics, unknown to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area in non-inertial dynamics systems subject to rotational accelerations. The aim of this paper is to present information of the surprising results obtained and to attract interest in research into dynamic field systems accelerated by rotation, and the multiple and remarkable scientific applications arising thereof. We further propose the boomerang as a clear example of the application of the Theory of Dynamic Interactions.
文摘On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. I proposed the boomerang as a paradigmatic example of bodies in rotation. Accordingly, I propose a new Theory of Dynamic Interactions. The aim of this paper is to present an audiovisual of the Theory of Dynamic Interactions, and the dynamic behavior of the boomerang, as an extension of the referred paper, asserting that the boomerang is a clear example of the application of this theory.