The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact continuous casting mold have been analyzed by numerical simulation. The results show that the...The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact continuous casting mold have been analyzed by numerical simulation. The results show that the maximum electromagnetic flux density is found in front of slit; the electromagnetic flux density becomes large as the coil current and slit number increase. In a certain frequency range, the electromagnetic flux density increases with the increase of frequency and the frequency range is different with the change of azimuthal position along the inner wall of mold. The uniformity of electromagnetic field is influenced mainly by frequency and mold structure parameters. Increasing slit number and adjusting slit arrangement position can improve the electromagnetic flux density and the uniformity of electromagnetic field. For a soft-contact mold with 16 slits, when frequency is 20 kHz, the optimal slit arrangement parameter is a:b=1:2, c=0.展开更多
Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different fu...Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different functions. By confirming drag force coefficient of nonmetallic particles with Reynolds number in the range of 0.2-10 and 10-25 respectively, two functions of terminal ve- locity for spherical nonmetallic particles have been got accordingly, which provide a theoretical basis for separating nonmetallic inclusions from Al melt in electromagnetic field.展开更多
Exact solution of Einstein's field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (1983) in presence of perfect fluid and electromagnetic...Exact solution of Einstein's field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (1983) in presence of perfect fluid and electromagnetic field. To get the deterministic solution of the field equations the expansion 0 in the model is considered as proportional to the eigen value σ2^2of the shear tensor σi^j and also the fluid obeys the barotropic equation of state. It is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. It is also observed that the string phase of the universe disappears in our model because particle density becomes negative. Some physical and geometric properties of the model are also discussed.展开更多
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf...Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.展开更多
A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in...A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in the melting process.The magnetic induction,temperature distribution and the phase interface moving characteristic during melting of the furnace burden were calculated.The effects of the direct current and inductive heating frequency on the process were analyzed.The simulation results show that:In the direction of burden radius,magnetic induction decreases from the outside of the burden to the center.Solid/liquid interface moves gradually from the outside of the burden to the center.The movement speed increases when the burden begins to melt.In the direction of the burden height,the distribution of eddy current in the surface is accord with the edge effect of the coil.Solid/liquid interface moves gradually from the center to the two sides.The direct current has a greater effect on the electromagnetic field and temperature field than frequency.展开更多
A 3D finite element model has been developed to analyze the AC electromagnetic field and Joule heating field in three-phase electroslag remelting(ESR)processes with three and six electrodes using Maxwell equations and...A 3D finite element model has been developed to analyze the AC electromagnetic field and Joule heating field in three-phase electroslag remelting(ESR)processes with three and six electrodes using Maxwell equations and Joule law, and then transient temperature field is calculated by sequential coupling with heat conducting equation.Numerical results show that the maximum of current density is distributed on the surfaces of ingot as the result of skin effect,and concentrated at electrode tips in slag cap.The Joule heat mainly appears in slag and the maximum appears at the interface of electrode/slag.The maximum temperature appears under the electrode,in the middle of the molten slag.Temperature distribution at the slag/metal interface is relatively uniform.The depth of the matel pool is about equal to the radius of ingot.Simulated temperature field is compared with experiment and obtained a good agreement.展开更多
According to the structure and the operating parameters of tundish at some plant,the inclusion removal in tundish with babbling curtain and electromagnetic field was simulated by numerical calculation method,and based...According to the structure and the operating parameters of tundish at some plant,the inclusion removal in tundish with babbling curtain and electromagnetic field was simulated by numerical calculation method,and based on the optimization,the actual-service test were put into effect.The results show that:compared with the bubble-gap soft filter of multiple gas curtains,the composite filter with traveling wave magnetic field and bubbling curtains in the tundish can further improve the inclusion removal rate.A large number of small particle inclusions are removed primarily by bubble flotation through the assisting of electromagnetic field.While the removal rate of inclusions which diameters are less than 50μm is increased by 48%,especially the removal rate of inclusions which diameters are less than 20μm is increased by 76%.The efficacy of the composite filter of traveling wave magnetic field and bubbling curtain is obviously.展开更多
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo...For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.展开更多
A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numericall...A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numerically to describe the magnetic field intensity profiles, the current density profiles, Lorentz force profiles, streamline profiles, the velocity profiles and temperature profiles in the 30t DC-EAF bath. The theoretical predictions of temperature field are in good agreement with measurement in the 30t DC-EAF bath, and the recirculation rate of flow is also in good agreement with published estimation.展开更多
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce...To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.展开更多
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model...The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.展开更多
Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distrib...Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed.展开更多
Temperature curves reflect geothermal gradients and local temperature anomalies, thus providing a new understanding of the underground reservoir conditions. When encountering caverns or fractures and fissures during d...Temperature curves reflect geothermal gradients and local temperature anomalies, thus providing a new understanding of the underground reservoir conditions. When encountering caverns or fractures and fissures during drilling, lost circulation may occur and result in a change to the original formation temperature field, and in severe cases, even the conventional open hole well logging data cannot be obtained. This paper uses finite element analysis software COMSOL to establish a heat transfer model for the wellbore/reservoir formation system during drilling and shut-in in the presence of lost circulation, and a case study is made in a carbonate reservoir in the Tahe oilfield. On the basis of the above, we analyze the temperature distribution in the leakage zone, and the studies have shown that the leakage and petrophysical properties have an impact on the temperature of the wellbore and formation, hence we can estimate the reservoir permeability using the temperature data. In addition, the determination of the temperature recovery time after some drilling fluids have leaked into the formation will help in recognizing the subsurface temperature field of the carbonate formation correctly, thus enhancing production logging interpretation accuracy and improving the understanding of later measurements.展开更多
The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the P...The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.展开更多
Based on the casting manufacture practice of steel slabs by CSP technology, the flow and the temperature fields of the funnel mould and the secondary cooling segment were simulated using the commercial code, CFX4. Com...Based on the casting manufacture practice of steel slabs by CSP technology, the flow and the temperature fields of the funnel mould and the secondary cooling segment were simulated using the commercial code, CFX4. Compared with other physical investigations, the correlative data of the present simulation results are in good agreement with them. Therefore, a more comprehensive survey for metallurgy characteristic of the flow and the temperature fields in CSP continuous casting process can be achieved.展开更多
The mathematical models have been established to describe the temperature and stress profiles in T16A14V cylinder during quenching. The residual stress and deformation of the workpiece can be predicted precisely based...The mathematical models have been established to describe the temperature and stress profiles in T16A14V cylinder during quenching. The residual stress and deformation of the workpiece can be predicted precisely based on ANSYS software. The simulated results show that the temperature of the divided element decreases faster at the edge than that at the internal of the workpiece during quenching from 1050 to 20°C. The largest temperature difference and dimension change in diameter are about 90°C and -0.935%, respectively. The position of largest tensile stress occurs around the edge of the cylinder.展开更多
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor...Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.展开更多
A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia...A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]展开更多
The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduct...The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduction cell were numerically calculated. The results show that the method of gas preheating and bake-out can basically meet the technical requirements of the start-up process for the drained cell. If the same distributing scheme of gas nozzle as that in the general cells is used, there are problems of great temperature gradients and low temperature zone at the top of cathode near the side of nozzles. In order to promote the effect of gas preheating and baking the drained cell, the jetting angle of end nozzle is adjusted and the temperature distribution in the drained cell is obviously improved. By means of simulating the temperature field in the case that jetting angle varies from 0? to 30?, it is concluded that better temperature distribution can be obtained if the jetting angle of end nozzle is approximately 15?.展开更多
基金Acknowledgements - This project is supported by the National Natural Science Foundation of China (Grant No.59734080) and the Pl
文摘The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact continuous casting mold have been analyzed by numerical simulation. The results show that the maximum electromagnetic flux density is found in front of slit; the electromagnetic flux density becomes large as the coil current and slit number increase. In a certain frequency range, the electromagnetic flux density increases with the increase of frequency and the frequency range is different with the change of azimuthal position along the inner wall of mold. The uniformity of electromagnetic field is influenced mainly by frequency and mold structure parameters. Increasing slit number and adjusting slit arrangement position can improve the electromagnetic flux density and the uniformity of electromagnetic field. For a soft-contact mold with 16 slits, when frequency is 20 kHz, the optimal slit arrangement parameter is a:b=1:2, c=0.
基金supported by the National Natural Science Foundation of China(No.59871029)the China Postdoctoral Science Foundation.
文摘Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different functions. By confirming drag force coefficient of nonmetallic particles with Reynolds number in the range of 0.2-10 and 10-25 respectively, two functions of terminal ve- locity for spherical nonmetallic particles have been got accordingly, which provide a theoretical basis for separating nonmetallic inclusions from Al melt in electromagnetic field.
文摘Exact solution of Einstein's field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (1983) in presence of perfect fluid and electromagnetic field. To get the deterministic solution of the field equations the expansion 0 in the model is considered as proportional to the eigen value σ2^2of the shear tensor σi^j and also the fluid obeys the barotropic equation of state. It is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. It is also observed that the string phase of the universe disappears in our model because particle density becomes negative. Some physical and geometric properties of the model are also discussed.
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
文摘Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.
基金Item Sponsored by Program for New Century Excellent Talents in University(NCET-09-0396)State Major Science and Technology Special Project Foundation for High-End Numerical Machine and Basic Manufacturing Equipment(2011ZX04014-052,2012ZX04012-011)
文摘A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in the melting process.The magnetic induction,temperature distribution and the phase interface moving characteristic during melting of the furnace burden were calculated.The effects of the direct current and inductive heating frequency on the process were analyzed.The simulation results show that:In the direction of burden radius,magnetic induction decreases from the outside of the burden to the center.Solid/liquid interface moves gradually from the outside of the burden to the center.The movement speed increases when the burden begins to melt.In the direction of the burden height,the distribution of eddy current in the surface is accord with the edge effect of the coil.Solid/liquid interface moves gradually from the center to the two sides.The direct current has a greater effect on the electromagnetic field and temperature field than frequency.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Co Ltd(No.50934008)
文摘A 3D finite element model has been developed to analyze the AC electromagnetic field and Joule heating field in three-phase electroslag remelting(ESR)processes with three and six electrodes using Maxwell equations and Joule law, and then transient temperature field is calculated by sequential coupling with heat conducting equation.Numerical results show that the maximum of current density is distributed on the surfaces of ingot as the result of skin effect,and concentrated at electrode tips in slag cap.The Joule heat mainly appears in slag and the maximum appears at the interface of electrode/slag.The maximum temperature appears under the electrode,in the middle of the molten slag.Temperature distribution at the slag/metal interface is relatively uniform.The depth of the matel pool is about equal to the radius of ingot.Simulated temperature field is compared with experiment and obtained a good agreement.
基金Item Sponsored by National Basic Research Program 973[2012CB722702]Key Program of Natural Science of Hubei Province of China[2011CDA053]Educational Commission of Hubei Province of China[CXY2009B005]
文摘According to the structure and the operating parameters of tundish at some plant,the inclusion removal in tundish with babbling curtain and electromagnetic field was simulated by numerical calculation method,and based on the optimization,the actual-service test were put into effect.The results show that:compared with the bubble-gap soft filter of multiple gas curtains,the composite filter with traveling wave magnetic field and bubbling curtains in the tundish can further improve the inclusion removal rate.A large number of small particle inclusions are removed primarily by bubble flotation through the assisting of electromagnetic field.While the removal rate of inclusions which diameters are less than 50μm is increased by 48%,especially the removal rate of inclusions which diameters are less than 20μm is increased by 76%.The efficacy of the composite filter of traveling wave magnetic field and bubbling curtain is obviously.
文摘For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.
文摘A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numerically to describe the magnetic field intensity profiles, the current density profiles, Lorentz force profiles, streamline profiles, the velocity profiles and temperature profiles in the 30t DC-EAF bath. The theoretical predictions of temperature field are in good agreement with measurement in the 30t DC-EAF bath, and the recirculation rate of flow is also in good agreement with published estimation.
文摘To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.
基金Supported by the National 863 Project (2001AA642030-1) and Zhejiang Provincial Key Research Project (010007037).
文摘The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.
基金the National Natural Science Foundation of China (No. 599995442).
文摘Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed.
文摘Temperature curves reflect geothermal gradients and local temperature anomalies, thus providing a new understanding of the underground reservoir conditions. When encountering caverns or fractures and fissures during drilling, lost circulation may occur and result in a change to the original formation temperature field, and in severe cases, even the conventional open hole well logging data cannot be obtained. This paper uses finite element analysis software COMSOL to establish a heat transfer model for the wellbore/reservoir formation system during drilling and shut-in in the presence of lost circulation, and a case study is made in a carbonate reservoir in the Tahe oilfield. On the basis of the above, we analyze the temperature distribution in the leakage zone, and the studies have shown that the leakage and petrophysical properties have an impact on the temperature of the wellbore and formation, hence we can estimate the reservoir permeability using the temperature data. In addition, the determination of the temperature recovery time after some drilling fluids have leaked into the formation will help in recognizing the subsurface temperature field of the carbonate formation correctly, thus enhancing production logging interpretation accuracy and improving the understanding of later measurements.
基金Projects 50225519 supported by the National Outstanding Youth Science Foundation of China0E4458 by the Youth Science Foundation of China Univer-sity of Mining and Technology
文摘The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.
基金Item Sponsored by Scientific Research Program Foundation of Shanghai City of China(04DZ05621)
文摘Based on the casting manufacture practice of steel slabs by CSP technology, the flow and the temperature fields of the funnel mould and the secondary cooling segment were simulated using the commercial code, CFX4. Compared with other physical investigations, the correlative data of the present simulation results are in good agreement with them. Therefore, a more comprehensive survey for metallurgy characteristic of the flow and the temperature fields in CSP continuous casting process can be achieved.
基金financial support from the key laboratory foundation of precision hot-forming for national defense science and tochnology
文摘The mathematical models have been established to describe the temperature and stress profiles in T16A14V cylinder during quenching. The residual stress and deformation of the workpiece can be predicted precisely based on ANSYS software. The simulated results show that the temperature of the divided element decreases faster at the edge than that at the internal of the workpiece during quenching from 1050 to 20°C. The largest temperature difference and dimension change in diameter are about 90°C and -0.935%, respectively. The position of largest tensile stress occurs around the edge of the cylinder.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400104
文摘Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.
文摘A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]
基金Project(G1999064903) supported by the National Basic Research Program of China
文摘The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduction cell were numerically calculated. The results show that the method of gas preheating and bake-out can basically meet the technical requirements of the start-up process for the drained cell. If the same distributing scheme of gas nozzle as that in the general cells is used, there are problems of great temperature gradients and low temperature zone at the top of cathode near the side of nozzles. In order to promote the effect of gas preheating and baking the drained cell, the jetting angle of end nozzle is adjusted and the temperature distribution in the drained cell is obviously improved. By means of simulating the temperature field in the case that jetting angle varies from 0? to 30?, it is concluded that better temperature distribution can be obtained if the jetting angle of end nozzle is approximately 15?.