Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
The distribution of the magnetic flux density in the magnetic field generator which provided travelling magnetic field was determined. The experiments using liquid gallium and aluminum silicon alloy to observe the ...The distribution of the magnetic flux density in the magnetic field generator which provided travelling magnetic field was determined. The experiments using liquid gallium and aluminum silicon alloy to observe the turbulent flow or remove inclusions were performed to obtain the basic principles how the distribution of the magnetic flux density took effect on removing inclusions from molten metal by electromagnetic field. The suitable area in the field for purifying metal was suggested.展开更多
Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that ...Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that the fluid flow in the core of a star cannot be laminar, so it is turbulent. However, we will see in this study that the configuration in which the conductive fluid contained in the core of a star is in rapid rotation around an axis of symmetry is the one that best explains the origin of the magnetic field of stars and planets. It also explains why certain types of stars have very intense magnetic fields. Indeed, we will show here that the magnetic field of stars and planets is created by the electric current generated by the rotational movement of charged fluid particles as in an electromagnet. The lines of this magnetic field are channelled by the solid paramagnetic seed which plays the role of magnetic core in the cores of planets and stars. The seed is composed mainly of Iron and Nickel on the planets and of solid helium-3 in the stars. In this work, we will use this model of rapidly rotating fluids to introduce a new way to ionize a neutral gas and maintain it in a plasma state for indefinitely large time scales, to present a new technique for generating very intense magnetic fields, to establish a new magnetic nucleation process and to propose a new type of nuclear fusion reactor in which the plasma is perpetually rapidly rotating.展开更多
The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with inc...The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with increasing the magnetic density linearly when the traveling magnetic field is applied during solidification, and the use of traveling magnetic field promotes the heterogeneous nucleation of pores. After the gas dissolved in the metal liquid accumulates to form large bubbles, the traveling magnetic field forces the bubbles to the surface of molten metal, so the gas is easy to separate from the melt in the liquid stage. The number of pores in the sample decreases with increasing the intensity of traveling magnetic field.展开更多
Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper analyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the mag...Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper analyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope, including the height of the rope axis, the half-width of the ropes and the length of the vertical current sheet below the ropes are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity. The implication of this result in solar active phenomena is briefly discussed.展开更多
Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processin...Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.展开更多
Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field wa...Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.展开更多
In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field pro...In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account. The transport equations concerned with the con- sidered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity, induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylin- der of concentric annuli. The effects of the various phys- ical parameters appearing into the model are demonstrated through graphs and tables. It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap be- tween the cylinders is less or equal to 1.70 times the radius of inner cylinder, while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder. These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases. It is also found that as the Hartmann number increases, there is a flattening ten- dency for both the velocity and the induced magnetic field. The influence of the induced magnetic field is to increase the velocity profiles.展开更多
The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time,which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increas...The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time,which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increase the geomagnetic measuring accuracy required for the geomagnetic matching localization,the strategy to eliminate the effect of connatural and induced magnetic fields of carrier on the geomagnetic measuring accuracy is investigated. The magnetic-dipole's magnetic field distributing theory is used to deduce the magnetic composition in the position of the sensor installed on the carrier. A geomagnetic measurement model is established by using the measuring data with the ideal sensor. Considering the magnetic disturbance of carrier and the error of sensor,a geomagnetic measuring compensation model is built. This model can be used to compensate the errors of carrier magnetic field and magnetic sensor in any case and its parameters have clear or specific physical meaning. The experimented results show that the model has higher geomagnetic measuring accuracy than that of others.展开更多
The distribution of the magnetic flux density in a soft-contact electromagnetic continuous casting (EMCC) rectangular mold was investigated. The experimental results show that with an increase in electric power, the...The distribution of the magnetic flux density in a soft-contact electromagnetic continuous casting (EMCC) rectangular mold was investigated. The experimental results show that with an increase in electric power, the magnetic flux density increases. The position where the maximum magnetic flux density appears will shift up when the coil moves to the top of the mold. At the same time, the maximum magnetic flux density will increase and the effective acting range of electromagnetic pressure will widen. As a result, in practice, the coil should be placed near the top part of the mold. The meniscus should be controlled near the top part of the coil, as this not only remarkably improves the billet surface quality but also saves energy. With the same electric power input, the higher the frequency, the lower the magnetic flux density.展开更多
Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. ...Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. A test rig was built to study the susceptibility of VDUs to magnetic fields at fundamental and third harmonic frequencies. It was found that the susceptibility level is largely dependent on refresh rate of the VDU and the orientation of the external ELF field. It was also found that the VDU susceptibility is significantly increased in the presence of harmonic frequency magnetic fields. About 30% of the tested samples have susceptibility levels higher than that stated in IEC 1000-4-8 standard.展开更多
The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The p...The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electricallyconducting liquids.It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load.The device is supplied by a unique electric power source delivering a single-phase high frequency electric current.The main working principle of the circuit is based on a double oscillating circuit inductor connected to the solid-state transistor generator.This technique,which yields a set of coupled oscillating circuits,consists of coupling a forced phase and an induced phase,neglecting the influence of the electric parameters of the loading part(i.e.,the low-conductivity liquid).It is shown that such an inductor is capable to provide a two-phase AC traveling magnetic field at high frequency.To better understand the working principle,the present work improves a previous existing simplified theory by taking into account a complex electrical equivalent diagram due to the different mutual couplings between the two inductors and the two corresponding induced current sets.A more detailed theoretical model is provided,and the key and sensitive elements are elaborated.Based on this theory,equipment is designed to provide a stirring effect on sodium chloride-salted water at 40 S/m.It is shown that such a device fed by several hundred kiloHertz electric currents is able to mimic a linear motor.A set of optimized operating parameters are proposed to guide the experiment.A pure electromagnetic numerical model is presented.Numerical modelling of the load is performed in order to assess the efficiency of the stirrer with a salt water load.Such a device can generate a significant liquid motion with both controlled flow patterns and adjustable amplitude.Based on the magnetohydrodynamic theory,numerical modeling of the salt water flow generated by the stirrer confirms its feasibility.展开更多
According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a...According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.展开更多
As a result of investigating analytically and experimentally the interchangeability between thermal, electrical and magnetic energies, it is proved in the presented study that the electric and magnetic energies have a...As a result of investigating analytically and experimentally the interchangeability between thermal, electrical and magnetic energies, it is proved in the presented study that the electric and magnetic energies have an equivalent grade and nature as the thermal energy. So, the natural flow of electric charges and magnetic flux is associated also by increase of entropy of universe, similar to the heat, and has the same nature of waves as the electromagnetic heat radiation. Casting the Maxwell’s wave equation into an energy frame of reference that replaces the time in wave equations by entropy, it is possible to represent the electric charges and magnetic flux as electromagnetic waves of electric and magnetic potentials. Such results lead to modify exclusively the definition of the physical nature of the electric charge and magnetic flux which is unavailable in literature.展开更多
In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz force...In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.展开更多
In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine,a mathematic model of submarine magnetic field extrapolation ...In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine,a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method(BEM).An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine.The data in different heights above the model submarine are obtained by use of tri-axial magnetometers.The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data.Moreover,the model can reflect the submarine magnetic field distribution in the air exactly,and is valuable in practical engineering.展开更多
The effect of frequency on magnetic flux coupling field were analyzed with traveling-wave electromagnetic stirring system using a coupled model of magnetic induction and fluid dynamics.Simulations were performed to in...The effect of frequency on magnetic flux coupling field were analyzed with traveling-wave electromagnetic stirring system using a coupled model of magnetic induction and fluid dynamics.Simulations were performed to investigate the influences of the frequency on magnetic flux density,electromagnetic body force and flow field.The results showed that the magnetic flux density decreased with increasing frequency.The electromagnetic body force wavy moved along the same direction and increased with increasing the frequency when the traveling magnetic field is applied. The core area of the stirring was in the bottom of the alloy melt.A large circulation in the vertical section of the alloy melt can be produced by the electromagnetic body and the maximum flow rate first increased and then decreased with increasing frequency.展开更多
Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a...Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.展开更多
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
文摘The distribution of the magnetic flux density in the magnetic field generator which provided travelling magnetic field was determined. The experiments using liquid gallium and aluminum silicon alloy to observe the turbulent flow or remove inclusions were performed to obtain the basic principles how the distribution of the magnetic flux density took effect on removing inclusions from molten metal by electromagnetic field. The suitable area in the field for purifying metal was suggested.
文摘Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that the fluid flow in the core of a star cannot be laminar, so it is turbulent. However, we will see in this study that the configuration in which the conductive fluid contained in the core of a star is in rapid rotation around an axis of symmetry is the one that best explains the origin of the magnetic field of stars and planets. It also explains why certain types of stars have very intense magnetic fields. Indeed, we will show here that the magnetic field of stars and planets is created by the electric current generated by the rotational movement of charged fluid particles as in an electromagnet. The lines of this magnetic field are channelled by the solid paramagnetic seed which plays the role of magnetic core in the cores of planets and stars. The seed is composed mainly of Iron and Nickel on the planets and of solid helium-3 in the stars. In this work, we will use this model of rapidly rotating fluids to introduce a new way to ionize a neutral gas and maintain it in a plasma state for indefinitely large time scales, to present a new technique for generating very intense magnetic fields, to establish a new magnetic nucleation process and to propose a new type of nuclear fusion reactor in which the plasma is perpetually rapidly rotating.
基金Project(2011CB610406)supported by the National Basic Research Program of ChinaProject(HIT.BRET1.2010008)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with increasing the magnetic density linearly when the traveling magnetic field is applied during solidification, and the use of traveling magnetic field promotes the heterogeneous nucleation of pores. After the gas dissolved in the metal liquid accumulates to form large bubbles, the traveling magnetic field forces the bubbles to the surface of molten metal, so the gas is easy to separate from the melt in the liquid stage. The number of pores in the sample decreases with increasing the intensity of traveling magnetic field.
基金Major Project 19791090 supported by National Natural Science Foundation of China and 973 Project (G2000078404).
文摘Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper analyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope, including the height of the rope axis, the half-width of the ropes and the length of the vertical current sheet below the ropes are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity. The implication of this result in solar active phenomena is briefly discussed.
基金This work has been partially performed under the financial supports from the National Natural Science Foundation of China (Grant No.50204004)the National Fundamental Research Project - new generation steel research project of China (Grant No.G1998061
文摘Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.
基金We gratefully acknowledge the financial support of the National Key Research and Development Program of China(2016YFA0401700).
文摘Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.
文摘In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account. The transport equations concerned with the con- sidered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity, induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylin- der of concentric annuli. The effects of the various phys- ical parameters appearing into the model are demonstrated through graphs and tables. It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap be- tween the cylinders is less or equal to 1.70 times the radius of inner cylinder, while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder. These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases. It is also found that as the Hartmann number increases, there is a flattening ten- dency for both the velocity and the induced magnetic field. The influence of the induced magnetic field is to increase the velocity profiles.
基金Sponsored by National Defence the 11th Five-Year Pre-research Project (51309060301)
文摘The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time,which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increase the geomagnetic measuring accuracy required for the geomagnetic matching localization,the strategy to eliminate the effect of connatural and induced magnetic fields of carrier on the geomagnetic measuring accuracy is investigated. The magnetic-dipole's magnetic field distributing theory is used to deduce the magnetic composition in the position of the sensor installed on the carrier. A geomagnetic measurement model is established by using the measuring data with the ideal sensor. Considering the magnetic disturbance of carrier and the error of sensor,a geomagnetic measuring compensation model is built. This model can be used to compensate the errors of carrier magnetic field and magnetic sensor in any case and its parameters have clear or specific physical meaning. The experimented results show that the model has higher geomagnetic measuring accuracy than that of others.
基金ItemSponsored by National Natural Science Foundation of China (50274203) , National High Technology Research andDevelopment Programof China (2001AA337040) and National Fundamental Research and Development Plan of China(G1998061510)
文摘The distribution of the magnetic flux density in a soft-contact electromagnetic continuous casting (EMCC) rectangular mold was investigated. The experimental results show that with an increase in electric power, the magnetic flux density increases. The position where the maximum magnetic flux density appears will shift up when the coil moves to the top of the mold. At the same time, the maximum magnetic flux density will increase and the effective acting range of electromagnetic pressure will widen. As a result, in practice, the coil should be placed near the top part of the mold. The meniscus should be controlled near the top part of the coil, as this not only remarkably improves the billet surface quality but also saves energy. With the same electric power input, the higher the frequency, the lower the magnetic flux density.
文摘Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. A test rig was built to study the susceptibility of VDUs to magnetic fields at fundamental and third harmonic frequencies. It was found that the susceptibility level is largely dependent on refresh rate of the VDU and the orientation of the external ELF field. It was also found that the VDU susceptibility is significantly increased in the presence of harmonic frequency magnetic fields. About 30% of the tested samples have susceptibility levels higher than that stated in IEC 1000-4-8 standard.
基金This study was supported by the Instrument and Equipment Development Project of the Chinese Academy of Sciences(YJKYYQ20200053)the“Double First-Class”Construction Fund(111800XX62)the Mechanical Engineering Discipline Construction Fund(111800M000).
文摘The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electricallyconducting liquids.It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load.The device is supplied by a unique electric power source delivering a single-phase high frequency electric current.The main working principle of the circuit is based on a double oscillating circuit inductor connected to the solid-state transistor generator.This technique,which yields a set of coupled oscillating circuits,consists of coupling a forced phase and an induced phase,neglecting the influence of the electric parameters of the loading part(i.e.,the low-conductivity liquid).It is shown that such an inductor is capable to provide a two-phase AC traveling magnetic field at high frequency.To better understand the working principle,the present work improves a previous existing simplified theory by taking into account a complex electrical equivalent diagram due to the different mutual couplings between the two inductors and the two corresponding induced current sets.A more detailed theoretical model is provided,and the key and sensitive elements are elaborated.Based on this theory,equipment is designed to provide a stirring effect on sodium chloride-salted water at 40 S/m.It is shown that such a device fed by several hundred kiloHertz electric currents is able to mimic a linear motor.A set of optimized operating parameters are proposed to guide the experiment.A pure electromagnetic numerical model is presented.Numerical modelling of the load is performed in order to assess the efficiency of the stirrer with a salt water load.Such a device can generate a significant liquid motion with both controlled flow patterns and adjustable amplitude.Based on the magnetohydrodynamic theory,numerical modeling of the salt water flow generated by the stirrer confirms its feasibility.
文摘According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.
文摘As a result of investigating analytically and experimentally the interchangeability between thermal, electrical and magnetic energies, it is proved in the presented study that the electric and magnetic energies have an equivalent grade and nature as the thermal energy. So, the natural flow of electric charges and magnetic flux is associated also by increase of entropy of universe, similar to the heat, and has the same nature of waves as the electromagnetic heat radiation. Casting the Maxwell’s wave equation into an energy frame of reference that replaces the time in wave equations by entropy, it is possible to represent the electric charges and magnetic flux as electromagnetic waves of electric and magnetic potentials. Such results lead to modify exclusively the definition of the physical nature of the electric charge and magnetic flux which is unavailable in literature.
文摘In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.
文摘In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine,a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method(BEM).An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine.The data in different heights above the model submarine are obtained by use of tri-axial magnetometers.The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data.Moreover,the model can reflect the submarine magnetic field distribution in the air exactly,and is valuable in practical engineering.
基金Item Sponsored by National Natural Science Foundation of China [No.51074091]the Natural Science Foundation of Inner Mongolia Autonomous Region [No.2010MS0107]
文摘The effect of frequency on magnetic flux coupling field were analyzed with traveling-wave electromagnetic stirring system using a coupled model of magnetic induction and fluid dynamics.Simulations were performed to investigate the influences of the frequency on magnetic flux density,electromagnetic body force and flow field.The results showed that the magnetic flux density decreased with increasing frequency.The electromagnetic body force wavy moved along the same direction and increased with increasing the frequency when the traveling magnetic field is applied. The core area of the stirring was in the bottom of the alloy melt.A large circulation in the vertical section of the alloy melt can be produced by the electromagnetic body and the maximum flow rate first increased and then decreased with increasing frequency.
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
基金Central Applied Research Laboratory(CARL)Center of Materials ResearchDepartment of Materials Science and Metallurgy,Shahid Bahonar University of Kerman(SBUK)for support of this work。
文摘Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.