宽禁带WBG(wide band gap)半导体电力电子器件由于其开关频率高、开关速度快、寄生参数大等特点从噪声源头引发了越来越严峻的电磁干扰问题。然而,传统的噪声源研究主要集中在30 MHz传导频段以内,如何评估噪声源在30~300 MHz较高频率范...宽禁带WBG(wide band gap)半导体电力电子器件由于其开关频率高、开关速度快、寄生参数大等特点从噪声源头引发了越来越严峻的电磁干扰问题。然而,传统的噪声源研究主要集中在30 MHz传导频段以内,如何评估噪声源在30~300 MHz较高频率范围内的辐射频段产生的影响仍存在不确定性,因此提出1种改进的WBG器件电磁干扰分析模型,与传统的非对称梯形波电磁干扰模型相比,首次详细考虑了WBG器件的结电容和跨导体的非线性特性,评估了非线性参数对辐射频段噪声的影响,并进一步提出该模型在辐射频段噪声源抑制中的应用。仿真结果验证了所提计算方法的准确性,基于SiC器件的硬件测试结果与理论分析相吻合。展开更多
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat...To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.展开更多
To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface...To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface of the aramid fabric(AF)and then electroless plating copper.After LIG treatment,the porous AF demonstrates admirable conductivity due to the generation of graphene.The superior surface resistance of the conductive fabric can reach 1.57Ω/sq after copper deposition,and the average EMI shielding effectiveness(SE)can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz,with the EMW absorption accounting for about 80%.The proposed technology provides a new idea for preparation of flexible EMI shielding materials.展开更多
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This...The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.展开更多
It has been proved by the World Health Organization (WHO) that electromagnetic waves would bring threats to public health in the tourism environment. However, most of the recent research about the relationship betwe...It has been proved by the World Health Organization (WHO) that electromagnetic waves would bring threats to public health in the tourism environment. However, most of the recent research about the relationship between building materials and electromagnetic waves was mainly focused on the electromagnetic products. It has also been claimed that the related research can rarely been found. Generally, ecotourism more tends to emphasize on a development of a new product and uni-environment study. However, these studies did not concern much on the application for conformity of healthcare-living materials, particularly to those block high-transparency materials. Hence, this research approaches to conform the application of architectural technique for producing tin-based powder with the add-on of Ni and Mg, in order to discuss the fully anti-electromagnetic wave property of healthcare material. With a low-cost advantage, the application field of architecture defines the ternary powder system, namely Sn-Al-Ni (SAN) and Sn-Al-Mn (SAM). Additionally, the surface coating method can be implemented to review the influence of particle size, content ratio of Ni and Mn, stack effect, porosity and thickness to electromagnetic interference (EMI) mechanism.展开更多
A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting pro...A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting probe and a detecting probe, or through calculations based on insertion loss measurement results when inserting a series nigh-value known impedance or a shunt low-value known impedance in the circuit. Then the impedance phase is extracted by the Hilbert transform (HT) of the logarithm of the obtained impedance magnitude. Performance studies show that the estimated phase error can increase greatly at a zero frequency in the Hilbert transform because of the existence of a singular point, and this effect can be eliminated by introducing a zero-point when the noise source does not include a series-connected capacitive component. It is also found that when the frequency is nigher than 150 kHz, the estimated phase error is not sensitive to the inductive source but sensitive to the capacitive source. Finally, under the conditions of the same measurement accuracies for impedance magnitude, the accuracy of complex impedance based on the HT can be improved about 10 times when compared with the accuracy of estimated parameters based on the impedance magnitude fitting method (IMFM).展开更多
针对复杂电子系统产生的传导EMI噪声,该文分别利用电偶极子模型、电路分析方法和散射参数方法提出了3种传导EMI噪声理论模型及其等效电路,包括因串扰引起的传导噪声模型,因接地不良引起的传导噪声模型,以及因PCB线缆阻抗失配引起的传导...针对复杂电子系统产生的传导EMI噪声,该文分别利用电偶极子模型、电路分析方法和散射参数方法提出了3种传导EMI噪声理论模型及其等效电路,包括因串扰引起的传导噪声模型,因接地不良引起的传导噪声模型,以及因PCB线缆阻抗失配引起的传导噪声模型。同时,还设计了一种串扰扼流圈以有效抑制因串扰引起的传导EMI噪声。实验结果表明,采用文中方法,某型商用车载导航和刷卡器能够通过GB 9254标准测试,噪声抑制效果分别可达44.8和29.28 dB V,从而验证了方法的有效性。展开更多
The sputtered Sn-Al and Sn-Cu thin films were used to investigate the effects of the crystallization mechanism and film thickness on the electromagnetic interference (EMI) characteristics. In addition, the annealed ...The sputtered Sn-Al and Sn-Cu thin films were used to investigate the effects of the crystallization mechanism and film thickness on the electromagnetic interference (EMI) characteristics. In addition, the annealed microstructure, electrical conductivities and EMI characteristics of the Sn-xAl films and the Sn-xCu films were compared. The results show that the electromagnetic interference (EMI) shielding of Sn-Al film was increased after annealing. For the Sn-Cu films with higher Cu mole concentration, the low frequency EMI shielding could not be improved. After annealing, the Sn-Cu thin film with lower Cu mole concentration possesses excellent EMI shielding at lower frequencies, but has an inverse tendency at higher frequencies.展开更多
文摘宽禁带WBG(wide band gap)半导体电力电子器件由于其开关频率高、开关速度快、寄生参数大等特点从噪声源头引发了越来越严峻的电磁干扰问题。然而,传统的噪声源研究主要集中在30 MHz传导频段以内,如何评估噪声源在30~300 MHz较高频率范围内的辐射频段产生的影响仍存在不确定性,因此提出1种改进的WBG器件电磁干扰分析模型,与传统的非对称梯形波电磁干扰模型相比,首次详细考虑了WBG器件的结电容和跨导体的非线性特性,评估了非线性参数对辐射频段噪声的影响,并进一步提出该模型在辐射频段噪声源抑制中的应用。仿真结果验证了所提计算方法的准确性,基于SiC器件的硬件测试结果与理论分析相吻合。
基金Fundamental Research Funds for the Central Universities,China(No. 2232022D-13)Fundamental Research Funds of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-M inistry Joint),China(No. X12812101/015)。
文摘To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.
基金Shanghai Sailing Program,Shanghai,China(No.22YF1400500)Fundamental Research Funds for the Central Universities,China(Nos.2232022D-11 and 22D128102/007)Shanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission,Shanghai,China(No.20ZR1401600)。
文摘To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface of the aramid fabric(AF)and then electroless plating copper.After LIG treatment,the porous AF demonstrates admirable conductivity due to the generation of graphene.The superior surface resistance of the conductive fabric can reach 1.57Ω/sq after copper deposition,and the average EMI shielding effectiveness(SE)can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz,with the EMW absorption accounting for about 80%.The proposed technology provides a new idea for preparation of flexible EMI shielding materials.
基金supported by the National Natural Science Foundation of China(Grant No.60776034)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.
基金grateful to Department of TravelIndustry Management,Far East University,NSC101-2218-E-269-002 for the financial support
文摘It has been proved by the World Health Organization (WHO) that electromagnetic waves would bring threats to public health in the tourism environment. However, most of the recent research about the relationship between building materials and electromagnetic waves was mainly focused on the electromagnetic products. It has also been claimed that the related research can rarely been found. Generally, ecotourism more tends to emphasize on a development of a new product and uni-environment study. However, these studies did not concern much on the application for conformity of healthcare-living materials, particularly to those block high-transparency materials. Hence, this research approaches to conform the application of architectural technique for producing tin-based powder with the add-on of Ni and Mg, in order to discuss the fully anti-electromagnetic wave property of healthcare material. With a low-cost advantage, the application field of architecture defines the ternary powder system, namely Sn-Al-Ni (SAN) and Sn-Al-Mn (SAM). Additionally, the surface coating method can be implemented to review the influence of particle size, content ratio of Ni and Mn, stack effect, porosity and thickness to electromagnetic interference (EMI) mechanism.
基金The Natural Science Foundation of Jiangsu Province(No.BK2008429)Open Research Foundation of State Key Laboratory of Millimeter Waves of Southeast University(No.K200603)+1 种基金China Postdoctoral Science Foundation(No.20080431126)Jiangsu Postdoctoral Science Foundation(No.2007-337)
文摘A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting probe and a detecting probe, or through calculations based on insertion loss measurement results when inserting a series nigh-value known impedance or a shunt low-value known impedance in the circuit. Then the impedance phase is extracted by the Hilbert transform (HT) of the logarithm of the obtained impedance magnitude. Performance studies show that the estimated phase error can increase greatly at a zero frequency in the Hilbert transform because of the existence of a singular point, and this effect can be eliminated by introducing a zero-point when the noise source does not include a series-connected capacitive component. It is also found that when the frequency is nigher than 150 kHz, the estimated phase error is not sensitive to the inductive source but sensitive to the capacitive source. Finally, under the conditions of the same measurement accuracies for impedance magnitude, the accuracy of complex impedance based on the HT can be improved about 10 times when compared with the accuracy of estimated parameters based on the impedance magnitude fitting method (IMFM).
文摘针对复杂电子系统产生的传导EMI噪声,该文分别利用电偶极子模型、电路分析方法和散射参数方法提出了3种传导EMI噪声理论模型及其等效电路,包括因串扰引起的传导噪声模型,因接地不良引起的传导噪声模型,以及因PCB线缆阻抗失配引起的传导噪声模型。同时,还设计了一种串扰扼流圈以有效抑制因串扰引起的传导EMI噪声。实验结果表明,采用文中方法,某型商用车载导航和刷卡器能够通过GB 9254标准测试,噪声抑制效果分别可达44.8和29.28 dB V,从而验证了方法的有效性。
基金the Center for Micro/Nano Science and Technology,National Cheng Kung University(NCKU Project of Promoting Academic Excellence&Developing World Class Research Center:D97-2700)NSC98-2221-E-006-068NSC98-2622-E-006-024-CC3 for the financial support
文摘The sputtered Sn-Al and Sn-Cu thin films were used to investigate the effects of the crystallization mechanism and film thickness on the electromagnetic interference (EMI) characteristics. In addition, the annealed microstructure, electrical conductivities and EMI characteristics of the Sn-xAl films and the Sn-xCu films were compared. The results show that the electromagnetic interference (EMI) shielding of Sn-Al film was increased after annealing. For the Sn-Cu films with higher Cu mole concentration, the low frequency EMI shielding could not be improved. After annealing, the Sn-Cu thin film with lower Cu mole concentration possesses excellent EMI shielding at lower frequencies, but has an inverse tendency at higher frequencies.