In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metam...In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.展开更多
An analytical model has been developed for analyzing the braking torque in electromagnetic retarder by flux tube and armature reaction method. The magnetic field distribution in air gap, the eddy current induced in th...An analytical model has been developed for analyzing the braking torque in electromagnetic retarder by flux tube and armature reaction method. The magnetic field distribution in air gap, the eddy current induced in the rotor and the braking torque are calculated by the developed model. Two-dimensional and three-dimensional finite element models for retarder have also been developed. Results from the analytical model are compared with those from finite element models. The validity of these three models is checked by the comparison of the theoretical predictions and the measurements from an experimental prototype. The influencing factors of braking torque have been studied.展开更多
Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical p...Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications.In this work,we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide(DMSO)system at room temperature for achieving chitin cross-linked aramid nanofibers(CANFs)rather than chitin nanofibers(ChNFs)and aramid nanofibers(ANFs)separately by using chitin and aramid pulp as raw materials.After freeze-drying process,the cross-linked chitin/aramid nanofibers(CA)aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy.The mechanical stress of CA aerogel was 170 kPa at 80%compressive strain,increased by 750%compared with pure ChNF aerogel.Similarly,the compressibility of CA aerogel was somewhat improved compared to ANF aerogel.The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed.Afterwards,the conductive aerogels with uniform porous structure(CA-M)were successfully obtained by vacuum impregnating CA aerogels in Ti_(3)C_(2)T_(x) MXene solution,displaying low thermal conductivity(0.01 W/(m·K)),high electromagnetic interference(EMI)shielding effectiveness(SE)(75 dB),flame retardant,and heat insulation.Meanwhile,the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities.As a result,the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics,EMI shielding,flame retardant,and heat insulation.展开更多
基金Project supported by the Research Project for Basic&Forefront Technology of Henan Province,China(Grant No.132300410301)the Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.13B430181)
文摘In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.
文摘An analytical model has been developed for analyzing the braking torque in electromagnetic retarder by flux tube and armature reaction method. The magnetic field distribution in air gap, the eddy current induced in the rotor and the braking torque are calculated by the developed model. Two-dimensional and three-dimensional finite element models for retarder have also been developed. Results from the analytical model are compared with those from finite element models. The validity of these three models is checked by the comparison of the theoretical predictions and the measurements from an experimental prototype. The influencing factors of braking torque have been studied.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.20230742300).
文摘Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications.In this work,we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide(DMSO)system at room temperature for achieving chitin cross-linked aramid nanofibers(CANFs)rather than chitin nanofibers(ChNFs)and aramid nanofibers(ANFs)separately by using chitin and aramid pulp as raw materials.After freeze-drying process,the cross-linked chitin/aramid nanofibers(CA)aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy.The mechanical stress of CA aerogel was 170 kPa at 80%compressive strain,increased by 750%compared with pure ChNF aerogel.Similarly,the compressibility of CA aerogel was somewhat improved compared to ANF aerogel.The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed.Afterwards,the conductive aerogels with uniform porous structure(CA-M)were successfully obtained by vacuum impregnating CA aerogels in Ti_(3)C_(2)T_(x) MXene solution,displaying low thermal conductivity(0.01 W/(m·K)),high electromagnetic interference(EMI)shielding effectiveness(SE)(75 dB),flame retardant,and heat insulation.Meanwhile,the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities.As a result,the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics,EMI shielding,flame retardant,and heat insulation.