In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-di...In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-dimensional(3 D)anisotropic formation.To overcome the ill-condition and convergence problems arising from the low induction number,Maxwell’s equations are reformulated into a mixed Helmholtz equation for the coupled potentials in a cylindrical coordinate system.The electrical fi eld continuation method is applied to approximate the perfectly electrical conducting(PEC)boundary condition,to improve the discretization accuracy of the Helmholtz equation on the surface of metal mandrels.On the base,the 3 D FVM on Lebedev’s staggered grids in the cylindrical coordinates is employed to discretize the mixed equations to ensure good conformity with typical well-logging tool geometries.The equivalent conductivity in a non-uniform element is determined by a standardization technique.The direct solver,PARDISO,is applied to efficiently solve the sparse linear equation systems for the multi-transmitter problem.To reduce the number of calls to PARDISO,the whole computational domain is divided into small windows that contain multiple measuring points.The electromagnetic(EM)solutions produced by all the transmitters per window are simultaneously solved because the discrete matrix,relevant to all the transmitters in the same window,is changed.Finally,the 3 D FVM is validated against the numerical mode matching method(NMM),and the characteristics of both the coaxial and coplanar responses of the EM field tool are investigated using the numerical results.展开更多
The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measuremen...The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measurement While Drilling with Electromagnetic waves(EM-MWD),The calculation for two models under the low frequency limits are compared with the experimentsand the results calculated with the theory of stationary current fields.展开更多
基金supported jointly by Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (No. XDA14020102)National key research and development plan (No. 2017YFC0601805)+5 种基金National Natural Science Foundation of China (No. 41574110)Youth Foundation of Hebei Educational Committee (No. QN2018217)Hebei Higher Education Teaching Reform Research and Practice(No. 2018GJJG328)Zhangjiakou science and technology bureau(No. 1821011B)Doctoral Fund of Hebei Institute of Architecture and Civil Engineering (No. B-201606)Academic Team Innovation Ability Improvement Project of Hebei Institute of Architecture and Civil Engineering(TD202011)。
文摘In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-dimensional(3 D)anisotropic formation.To overcome the ill-condition and convergence problems arising from the low induction number,Maxwell’s equations are reformulated into a mixed Helmholtz equation for the coupled potentials in a cylindrical coordinate system.The electrical fi eld continuation method is applied to approximate the perfectly electrical conducting(PEC)boundary condition,to improve the discretization accuracy of the Helmholtz equation on the surface of metal mandrels.On the base,the 3 D FVM on Lebedev’s staggered grids in the cylindrical coordinates is employed to discretize the mixed equations to ensure good conformity with typical well-logging tool geometries.The equivalent conductivity in a non-uniform element is determined by a standardization technique.The direct solver,PARDISO,is applied to efficiently solve the sparse linear equation systems for the multi-transmitter problem.To reduce the number of calls to PARDISO,the whole computational domain is divided into small windows that contain multiple measuring points.The electromagnetic(EM)solutions produced by all the transmitters per window are simultaneously solved because the discrete matrix,relevant to all the transmitters in the same window,is changed.Finally,the 3 D FVM is validated against the numerical mode matching method(NMM),and the characteristics of both the coaxial and coplanar responses of the EM field tool are investigated using the numerical results.
文摘The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measurement While Drilling with Electromagnetic waves(EM-MWD),The calculation for two models under the low frequency limits are compared with the experimentsand the results calculated with the theory of stationary current fields.