Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m...Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised....In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.展开更多
The signals generated by electromagnetic flow sensors used for slurry fluids are often affected by noise interference produced by interaction with the slurry itself.In this study,the power spectrum characteristics of...The signals generated by electromagnetic flow sensors used for slurry fluids are often affected by noise interference produced by interaction with the slurry itself.In this study,the power spectrum characteristics of the signal are studied,and an attempt is made to determine the relationship between the characteristics of the related noise and the velocity and concentration of the slurry fluid.Dedicated experiments are conducted and the related power spectrum curve is obtained processing the signal measured by the sensor with Matlab.Numerical simulations are also carried out in the frame of an Eulerian approach in order get additional insights into the considered problem through comparison with the experimental results.The following conclusions are drawn:(1)The intensity of noise is directly proportional to the number of solid particles colliding with the electrode of the electromagnetic flow sensor per unit time,and to the square of the average velocity of the flow layer near the pipe wall.(2)With an increase in the slurry noise intensity,the power spectrum curve shifts upward in the logarithmic coordinate system(and vice versa).展开更多
The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutu...The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutual relation of the two kinds of phenomenon,were contribute to monitor the regulation of the mine rock and pre- vent the dynamic disasters of the mine.There were two charge sensors,one electromag- netic radiated sensors and one pressure sensor in the experiment to detect the EME sig- nal and the charge intensity signal during the load-bearing failure processing of the rock. The results show that the charge intensity signal is prior to the EME signal through the date processing and numerical analysis.The two signals change obviously before the rock crush.The two kinds of phenomenon are homogenous and have obvious master-slave characteristic.With the appeared of the EME signal,the charge intensity signal decreased, the power is released.展开更多
In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional p...In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional point(EP)and the coherent perfect absorber-laser(CPAL)point,to significantly enhance the sensitivity and detectability of photonic sensors.We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric,unbalanced gain-loss profile.The PTLY-symmetric metasurfaces can exhibit similar scattering properties as their Pr-symmetric counterparts at singular points,while achieving a higher sensitivity and a larger modulation depth,possible with the reciprocal-scaling factor(i.e.,X transformation).Specifically,with the optimal reciprocalscaling factor or near-zero phase offset,the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth,thus paving a promising route toward the detection of small-scale perturbations caused by,for example,molecular,gaseous,and biochemical surface adsorbates.展开更多
基金supported by the National Natural Science Foundation of China(No.52204340)the Natural Science Foundation of Guangxi,China(No.2022GXNSFBA035621)The authors wish to thank the Advanced Manufacturing and Materials Centre from Warwick Manufacturing Group(WMG),University of Warwick for the provision of facilities and equipment.
文摘Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金This work was supported by the innovation project of Science and Technology Commission of the Central Military Commission。
文摘In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.
基金National Key Research and Development Program of China Subproject(No.2016YFD0700103)Natural Science Foundation of Henan(Nos.202300410124&19HASTIT021)+1 种基金Key Research and Development Program of Yunnan Province(No.2018ZC001)the National Natural Science foundation of China under Grant No.61801288.
文摘The signals generated by electromagnetic flow sensors used for slurry fluids are often affected by noise interference produced by interaction with the slurry itself.In this study,the power spectrum characteristics of the signal are studied,and an attempt is made to determine the relationship between the characteristics of the related noise and the velocity and concentration of the slurry fluid.Dedicated experiments are conducted and the related power spectrum curve is obtained processing the signal measured by the sensor with Matlab.Numerical simulations are also carried out in the frame of an Eulerian approach in order get additional insights into the considered problem through comparison with the experimental results.The following conclusions are drawn:(1)The intensity of noise is directly proportional to the number of solid particles colliding with the electrode of the electromagnetic flow sensor per unit time,and to the square of the average velocity of the flow layer near the pipe wall.(2)With an increase in the slurry noise intensity,the power spectrum curve shifts upward in the logarithmic coordinate system(and vice versa).
基金the National Natural Science Foundation of China(50490275)Education Office of Liaoning Province(20082123)
文摘The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutual relation of the two kinds of phenomenon,were contribute to monitor the regulation of the mine rock and pre- vent the dynamic disasters of the mine.There were two charge sensors,one electromag- netic radiated sensors and one pressure sensor in the experiment to detect the EME sig- nal and the charge intensity signal during the load-bearing failure processing of the rock. The results show that the charge intensity signal is prior to the EME signal through the date processing and numerical analysis.The two signals change obviously before the rock crush.The two kinds of phenomenon are homogenous and have obvious master-slave characteristic.With the appeared of the EME signal,the charge intensity signal decreased, the power is released.
文摘In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional point(EP)and the coherent perfect absorber-laser(CPAL)point,to significantly enhance the sensitivity and detectability of photonic sensors.We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric,unbalanced gain-loss profile.The PTLY-symmetric metasurfaces can exhibit similar scattering properties as their Pr-symmetric counterparts at singular points,while achieving a higher sensitivity and a larger modulation depth,possible with the reciprocal-scaling factor(i.e.,X transformation).Specifically,with the optimal reciprocalscaling factor or near-zero phase offset,the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth,thus paving a promising route toward the detection of small-scale perturbations caused by,for example,molecular,gaseous,and biochemical surface adsorbates.