With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the elect...With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.展开更多
An innovative 3-phase AC (Alternative Current) drive circuit for the seismic disc in micro-gyroscopes is designed and verified by computer simulations and experiments. The in-plane dynamic model of the seismic disc wi...An innovative 3-phase AC (Alternative Current) drive circuit for the seismic disc in micro-gyroscopes is designed and verified by computer simulations and experiments. The in-plane dynamic model of the seismic disc with mass eccentricity and air gap against the centre bearing and the mathematic expression of two sinusoidal magnetic fields are developed respectively. In order to prevent the seismic disc from collision with the centre bearing and the EM (Electromagnetic) poles, an anti-collision controller is established by employing two Look-up tables which define the intensity of the applied current to the EM poles. Self-sensing technique is included to measure the real-time offset of the disc by two orthogonal pairs of EM poles, without any additional sensors. The drive circuit under SPWM (Sinusoidal Pulse Width Modulation) operation and the anti-collision strategy are verified by intensive computer simulations via commercial software, OrCAD 9, and experiments.展开更多
Due to the widespread application in recent years, high-power pulse sources have received special attention from large companies and R & D institutions around the world. Compared with foreign mid-range and high-en...Due to the widespread application in recent years, high-power pulse sources have received special attention from large companies and R & D institutions around the world. Compared with foreign mid-range and high-end products, China’s development in this field is relatively lagging behind and lacks mature mid-range and high-end products. The reason is not only because of lack of theoretical support, but more importantly, in the pursuit of indicators and design, the electromagnetic compatibility of the equipment has not been studied thoroughly, resulting in a large degree of distortion in the output waveform, resulting in a reduction in actual value. This paper introduces the sources of high-power pulsed electromagnetic interference of the main driving source, conducts a reasonable high-power electromagnetic compatibility driving source dynamic analysis, and proposes measures to improve electromagnetic compatibility.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studi...Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.展开更多
Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and ...Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.展开更多
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive syste...Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppres- sion techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.展开更多
文摘With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.
文摘An innovative 3-phase AC (Alternative Current) drive circuit for the seismic disc in micro-gyroscopes is designed and verified by computer simulations and experiments. The in-plane dynamic model of the seismic disc with mass eccentricity and air gap against the centre bearing and the mathematic expression of two sinusoidal magnetic fields are developed respectively. In order to prevent the seismic disc from collision with the centre bearing and the EM (Electromagnetic) poles, an anti-collision controller is established by employing two Look-up tables which define the intensity of the applied current to the EM poles. Self-sensing technique is included to measure the real-time offset of the disc by two orthogonal pairs of EM poles, without any additional sensors. The drive circuit under SPWM (Sinusoidal Pulse Width Modulation) operation and the anti-collision strategy are verified by intensive computer simulations via commercial software, OrCAD 9, and experiments.
文摘Due to the widespread application in recent years, high-power pulse sources have received special attention from large companies and R & D institutions around the world. Compared with foreign mid-range and high-end products, China’s development in this field is relatively lagging behind and lacks mature mid-range and high-end products. The reason is not only because of lack of theoretical support, but more importantly, in the pursuit of indicators and design, the electromagnetic compatibility of the equipment has not been studied thoroughly, resulting in a large degree of distortion in the output waveform, resulting in a reduction in actual value. This paper introduces the sources of high-power pulsed electromagnetic interference of the main driving source, conducts a reasonable high-power electromagnetic compatibility driving source dynamic analysis, and proposes measures to improve electromagnetic compatibility.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.
基金National Natural Science Foundation of China(No.61304244)
文摘Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U1560206 and 51975510)the Natural Science Foundation of China in Hebei Province(Grant No.E2021203129).
文摘Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.
文摘Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppres- sion techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.