The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised....In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.展开更多
研究如何利用电磁矢量传感器阵列中隐含的冗余空域信息解决多个相干极化信号源的二维波达方向(DOA)和极化参数的同时估计问题。基于整个阵列中所隐含的多个空域旋转不变结构,将组成阵列的单个或多个电磁矢量传感器单元看作一个无模糊子...研究如何利用电磁矢量传感器阵列中隐含的冗余空域信息解决多个相干极化信号源的二维波达方向(DOA)和极化参数的同时估计问题。基于整个阵列中所隐含的多个空域旋转不变结构,将组成阵列的单个或多个电磁矢量传感器单元看作一个无模糊子阵,利用空间平滑方法对阵列数据进行预处理,以恢复信号协方差矩阵的秩特性。在此基础上,利用多信号分类方法(MUSIC)和旋转不变参数估计方法(ESPRIT)完成多个相干极化信号源的二维 DOA 和极化参数的同时估计。文中还讨论了成功进行信号解相干的必要条件,并通过计算机仿真验证和比较了所给方法的有效性及其辨识能力。展开更多
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金This work was supported by the innovation project of Science and Technology Commission of the Central Military Commission。
文摘In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.
文摘研究如何利用电磁矢量传感器阵列中隐含的冗余空域信息解决多个相干极化信号源的二维波达方向(DOA)和极化参数的同时估计问题。基于整个阵列中所隐含的多个空域旋转不变结构,将组成阵列的单个或多个电磁矢量传感器单元看作一个无模糊子阵,利用空间平滑方法对阵列数据进行预处理,以恢复信号协方差矩阵的秩特性。在此基础上,利用多信号分类方法(MUSIC)和旋转不变参数估计方法(ESPRIT)完成多个相干极化信号源的二维 DOA 和极化参数的同时估计。文中还讨论了成功进行信号解相干的必要条件,并通过计算机仿真验证和比较了所给方法的有效性及其辨识能力。