In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor de...In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach.Ppolymericprecursor characterization as well as phase evolution,microstructure,and electromagnetic wave(EMW)absorption properties of the ceramics were investigated in detail.The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss(tand:)and magnetic loss,leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 C.(i)For the Co feeding of 6.25 wt%,the minimum reflection loss(RLmin)is-53.1 dB,and the effective absorption bandwidth(EAB)is 4.96 GHz(7.12-12.08 GHz)with a ceramic-paraffin hybrid sample thickness of 3.10 mm,achieving full X-band coverage;(i)for the Co feeding of 9.09 wt%,the RLmin value of-66.4 dB and the EAB value of 3.04 GHz(8.40-11.44 GHz)were achieved with a thickness of only 2.27 mm.Therefore,the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin,lightweight,and efficient EMW absorption in harsh environments.展开更多
基金the National Natural Science Foundation of China(Nos.51872246 and 52061135102)for financial support.
文摘In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach.Ppolymericprecursor characterization as well as phase evolution,microstructure,and electromagnetic wave(EMW)absorption properties of the ceramics were investigated in detail.The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss(tand:)and magnetic loss,leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 C.(i)For the Co feeding of 6.25 wt%,the minimum reflection loss(RLmin)is-53.1 dB,and the effective absorption bandwidth(EAB)is 4.96 GHz(7.12-12.08 GHz)with a ceramic-paraffin hybrid sample thickness of 3.10 mm,achieving full X-band coverage;(i)for the Co feeding of 9.09 wt%,the RLmin value of-66.4 dB and the EAB value of 3.04 GHz(8.40-11.44 GHz)were achieved with a thickness of only 2.27 mm.Therefore,the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin,lightweight,and efficient EMW absorption in harsh environments.